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Abstract of the Dissertation

Objective Assessment of Motor Deficits in

Patients with Degenerative Spinal Cord

Disorders

by

Sunghoon Lee

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Majid Sarrafzadeh, Chair

Degenerative spinal disorders such as cervical spondylotic myelopathy (CSM) or

lumbar spinal stenosis (LSS) are caused by many factors including prolonged and

inappropriate sitting positions, heavy labor, and genetically inherited predisposi-

tion. These ailments are closely related to the aging process of the human body,

and their populations are growing rapidly in developed nations. Thus, there is a

great need for a simple, inexpensive, reliable, and objective assessment system.

This dissertation introduces a system for assessing hand motor dysfunction,

which is a common symptom of CSM, using a mobile handgrip device with simple

target tracking tests. Data collected from 30 CSM patients and 30 age-matched

control subjects is used to validate the system’s three fundamental quantifica-

tion objectives using a reliable feature selection technique: detecting the sever-

ity of hand motor deficits, correlation to the patients’ perceived motor deficits,

and detecting the changes in motor conditions as a result of medical treatment

(e.g., surgical operation). Then, this dissertation introduces a more in-depth al-

gorithm that quantifies the level of hyperreflexia, which is an unique symptom of

CSM patients closely related to their fine motor controllability. This thesis fur-

ther discusses a prediction algorithm that estimates the postoperative functional
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outcomes of CSM patients using their clinical, demographic, and preoperative

functional (handgrip) information. The handgrip device has also been tested on

patients with other types of neuromotor ailments such as cerebral vascular ac-

cident (CVA) and chronic inflammatory demyelinating polyneuropathy (CIDP)

through a pilot study. A technical solution to quantification of motor function for

patients suffering from lower back spinal disorders (e.g., LSS) is briefly discussed

as a future work.
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CHAPTER 1

Introduction

Cervical spondylotic myelopathy (CSM) is a degenerative spinal disorder in the

cervical (i.e., neck) region, which is the most common spinal cord dysfunction in

adults who are over the age of fifty in North America [You00, TB10]. CSM is

closely related to the aging process of the human body, which can be caused by

many factors including inappropriate sitting postures, heavy labor or genetically

inherited predisposition [You00,Kli10]. As a consequence of the trend towards ag-

ing societies and changes in working environments that involve prolonged sitting,

the CSM population is expected to grow rapidly in developed nations [You00].

Chronic disk degeneration, inflammatory diseases or other soft tissue abnormality

caused by CSM often result in significant pressure on the spinal cord or nerve

roots. A major complaint of CSM patients is the impairment of hand motor func-

tion [DSH06], which produces symptoms such as loss of hand dexterity, numbness,

stiffness, weakness, fatigue, and tremor. These symptoms may develop to severe

weakness or complete paralysis [FJH12]. Virtually all CSM patients have radio-

graphic evidence (e.g., X-ray, MRI, or CT images) of degenerative changes in their

cervical spine by age 30, which often develops until 60 years of age [HT04,You00].

Thus, frequent monitoring of physical conditions in CSM patients is essential for

the purposes of assessing the ailment progress, evaluating the results of a medical

treatment, and preventing possible onset of the ailment.

Unfortunately, frequent radiographical testing is extremely costly, especially

for weekly, monthly or yearly monitoring. Consequently, current methods of

1



Hand motor

response

Visual feedback

(a) (b)

Figure 1.1: (a) The handgrip device and two tracking waveforms used to in this

study (left: step, right: sinusoidal). (b) A picture of a CSM patient performing

the test before her surgical operation.

clinically assessing the ailment progress or neuromotor deficits heavily rely on

patient-reported outcomes such as Oswestry Disability Index [FP00], Japanese

Orthopedic Association [FCK07], or American Spinal Injury Association motor

scores [ETK96]. However, these methods suffer from variabilities among respon-

ders and most importantly, some of these methods are known to carry response

shift. Response shift refers to changes in an individual’s internal standard of

perceived health status, which often occurs after treatment such as a surgical

operation [Fin10]. These make the method especially difficult for longitudinal

tracking of patient progress [SGC05,STC13]. Clinical maneuver (e.g., Hoffmann’s

sign [DM91]) is another frequently used method. However, it often has limited

ordinal scales and suffers from variations in observer’s standard for evaluating

motor function, which makes them difficult to be used for longitudinal patient

monitoring [CWC11]. As a consequence, a simple, objective, reliable, and accu-

rate movement assessment system for quantifying motor deficits of patient CSM

patients is in great need [SD07].

Handgrip motor function has recently received attention as a simple, accurate,

and economical assessment methodology [JRK09] since the hand muscle control-

2



lability is closely related to the quality of life and the motor function required

for activities of daily living (ADL) such as eating, writing, or picking up small

objects [SD07]. For instance, authors in [SD07] have investigated various meth-

ods for utilizing handgrip strength to determine mobility and self-care ability.

However, the work in [SD07] only considers the patient’s ability to exert a certain

level of grip forces rather than the fine controllability of their hand muscles, which

certainly has greater correlation with ADL [KGG05,MI94,SN00].

Target tracking tests based on handgrip strength, which quantify fine hand

motor controllability, have been well studied in other ailments carrying neu-

romotor deficits such as stroke [NPL11, KZB04, LGM13a], Parkinson’s Disease

(PD) [PBC10,KZB04], brain injury [KHM95,KGG05] and chronic inflammatory

demyelinating polyneuropathy (CIDP) [LGM13a]. Target tracking tests visual-

ize a predefined waveform that a subject must track by adjusting their hand

muscle strength in order to minimize the error between the waveform and the

subject’s response. Quantification of fine motor function based on tracking error

has shown to be significantly larger in patients with neuromuscular diseases (e.g.,

stroke or PD) compared to control subjects [KZB04]. Furthermore, in a previous

study [LGM13a], it has been shown that the results of target tracking contain

motor characteristics that are specific to ailments such as stroke or CIDP. How-

ever, to the best knowledge of the authors, use of target tracking tests to quantify

hand motor deficits in chronic spinal cord disorder, as well as its correlation to

the perceived motor deficits, has not yet been investigated.

This dissertation provides a comprehensive overview of the use of target track-

ing tests for objectively quantifying motor deficits in patients with degenerative

spinal cord disorders. The system employs a portable and mobile handgrip device

that can be easily deployed at home or hospital environments. The data analytic

methodologies discussed in this work will allow to (i) measure the level of motor

deficits in hand dexterity, (ii) identify motor features that have the greatest cor-

3



relation to the perceived motor dysfunction and quality of life, (iii) identify the

changes in functional outcomes as a result of medical treatment, and (iv) predict

the postoperative motor outcomes of patients based on their preoperative motor

conditions and demographic/clinical information. The technical contributions of

this paper are the following.

First, a novel system that measures the hand motor capacity using a lightweight

and inexpensive handgrip device is introduced. This portable sensing platform

provides various dimensions of motor characteristics such that the known symp-

toms of the associated ailments can be quantified.

Second, the reliability and validity of the target tracking test using the hand-

grip device are validated based on a metric that employs multi-dimensional motor

features (which are extracted based on the known symptoms of CSM). Machine

learning algorithms and feature selection techniques are utilized to investigate

the system’s (i) ability to detect the appearance of ailment compared to the age-

matched controls, (ii) correlation to the perceived level of motor deficits, and (iii)

ability to detect any changes in motor function as a result of medical treatment.

Third, a method specifically designed for analyzing the level of hyperexcitabil-

ity in hand muscles, which is a unique symptom of CSM patients, is introduced.

The analysis includes a series of four signal processing units: (i) the pre-processing

unit, (ii) the abnormality (i.e. activation hypertonia) detection unit, (iii) the ab-

normality analytic unit, and (iv) the parameter extraction unit. The preprocessing

unit performs a low-pass filter to reduce noise in the raw signals, and segments the

signals into a number of subsignals. The detection unit statistically determines

whether a resultant subsignal contains the outcome of the exaggerated muscle tone

using machine learning algorithms. If activation hypertonia is noted, the analytic

unit performs an in-depth analysis to locate important geometric points using dy-

namic time warping (DTW). The parameter extraction unit extracts important

variables that characterize the severity of activation hypertonia.

4



Fourth, a method that predicts the postoperative functional outcomes of CSM

patients based on their preoperative information is introduced. This is a typical

example of a prediction problem that involves a finite set of independent vari-

ables (i.e., preoperative data of patients) and its associated noisy observation of

a dependent variable (i.e., postoperative data of patients). The proposed method

employs Gaussian Process Regression that predicts the observation variable using

covariances among training data and their geometric positions within the feature

dimension.

Fifth, a pilot study that applies the proposed system to other types of neu-

romotor ailments is discussed. In this study, various motor characteristics that

are uniquely observed among Cerebral Vascular Accident (CVA or also known

as stroke) and Chronic Inflammatory Demyelinating Polyneuropahty (CIDP) pa-

tients are analyzed. This pilot study enables new opportunities for accurate quan-

tification of an individual’s ailment specification, disease severity, and specific

physiological symptoms.

The rest of this dissertation is organized as follows. In Chapter 2, the re-

liability and validity of the target tracking test in CSM patients are discussed.

Chapter 3 and Chapter 4 discuss the in-depth analysis for hyperexcitability and

the method for predicting postoperative functional outcomes, respectively. Chap-

ter 5 elaborates the pilot study on CVA and CIDP patients. Future work and

conclusions are discussed in Chapter 6.
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CHAPTER 2

Validity and Reliability of the System

2.1 Objectives

This section investigates three different analytic objectives using a reliable feature

selection technique: (i) analyzing the severity of motor deficits in preoperative

CSM patients by comparing to age-matched control subjects, (ii) finding correla-

tion of the motor characteristics of CSM patients to their perceived level of motor

deficits, and (iii) detection of changes in motor functions as a result of medical

treatment.

2.2 Materials

2.2.1 Participants

A total of 19 CSM patients (12 males) with a mean age of 62.8 and a standard

deviation of 14.6 participated in the study. A total of 33 CSM patients were ini-

tially recruited from the UCLA Spine Center. 11 patients refused to participate

in the study after their operations. Data belonging to 3 patients were corrupted

due to system malfunction, and was removed from the study. As a consequence,

this cohort study involves preoperative data of 19 patients, and 17 of them have

returned to the clinic for follow-ups with minimal time span of 3 months after

the surgery. All patients were verified for their anatomic evidence of CSM (e.g.,

location or the level of the cervical spinal injury) using conventional X-ray im-

6



ages. All patients received spinal cord decompression to alleviate pressure on the

impacted nerve root, thereby improving motor function and associated pain. The

surgical operation was performed by a single spine surgeon. A total of 19 age-

matched control subjects (10 male) with ages of 59.1 ± 7.1 were recruited from

the general population. The inclusion criteria were age and having no history of

any neuromotor impairment.

The examination procedure was approved by the UCLA institutional review

board. All participants provided consent after an explanation of the study protocol

and the associated risks.

2.2.2 Sensing Platform

This work utilizes a handgrip device for quantifying fine hand motor capacity,

which was introduced in [LGM13b] (Fig. 1.1). The major components of the

handgrip device are the springs, the handle, and the displacement sensor in the

body. The handle of the device is connected to the main frame by three springs,

which provide physical resistance for grasping performance. These springs can be

easily replaced to accommodate participants with different grip strength. This

study used five springs with different tension forces (i.e., 0.38lbs/in, 0.88lbs/in,

1.94lbs/in, 5.10lbs/in, 10.7lbs/in), which allow a total of 5× 5× 5 = 125 different

spring combinations. The displacement sensor is embedded in the bottom of the

frame that captures the absolute position of the handle at a sampling rate of 32Hz.

2.2.3 Examination Procedure

Participants start the examination procedure by measuring their maximum vol-

untary contraction (MVC), which represents the maximum grip force that par-

ticipants can voluntarily exert. The measured MVC is used to normalize the

maximum possible amplitude of the target tracking tests. The waveform within

7
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Figure 2.1: Sample test results collected from (a) CSM patients before operation,

and (b) age-matched control subjects.

the screen moves to the left while the horizontal position of the blue circle is

fixed in the middle of the x-axis as shown in Fig. 1.1 (a). The vertical position

of the blue circle changes according to the grip force generated by participants.

The screen also displays the trace history of the patient for visual feedback. The

length of the test is 45 seconds.

Fine motor capacity of participants was tested using two different targets:

sinusoidal and step waveforms. The sinusoidal waveform has a period of 6.17 sec-

onds (i.e., 0.16Hz), which results in approximately seven sinusoidal cycles within

a 45 seconds test. The amplitude of the waveform covers from 0 to 100% of the

subject’s MVC as illustrated in Fig. 2.1; the unit of the amplitude is in %MVC.

The sinusoidal waveform investigates the motor-learning capability for repeated

fine muscle control [Jon00]. The step waveform has a period of 3 seconds (i.e.,

0.33Hz) with 50% duty cycle, which looks like a clock pulse as shown in Fig. 2.1.

The higher amplitude (ceiling) is equal to 80%MVC and the lower amplitude

(floor) is equal to 20%MVC. The step waveform investigates predictive tracking

and ability to execute smooth constant velocity movements [Jon00]. Participants

repeated each waveform three times per clinical visit. The first test (out of the

three tests) is considered as a practice trial and was completely removed from

8



further analysis.

2.2.4 Patient Reported Functional Outcome

Participants reported the perceived level of motor impairments in performing

ADL using two different patient reported outcomes: Oswestry Disability Index

(ODI) [FP00] and modified Japanese Orthopaedic Association (mJOA) motor

score [BLK91].

ODI is one of the well-known measures of perceived motor functions and the

quality of life for patients with spinal injuries [FP00,TM94]. The survey contains

ten six-multiple-choice questionnaires related to the motor function and the qual-

ity of life. The accumulated score ranges from 0 (completely disabled) to 50 (no

dysfunction)1, which is linearly scaled to [0, 1] for simplicity.

mJOA is another well-known measure of motor deficits in CSM patients [BLK91].

This survey contains four multiple-choice questionnaires related to upper extrem-

ity and hand motor function. The accumulated score of mJOA ranges from 0

(completely disabled) to 18 (no dysfunction), which is again linearly scaled to

[0, 1].

2.3 Methods

Quantifying comprehensive motor function is a challenging task since there ex-

ists no ground truth labeling of the data [SC01]; true physical status of a pa-

tient is not known. As a consequence, researchers in the medical community

emphasize reliability and validity of a new motor measure through various tech-

niques including (i) test-retest reliability, (ii) detection of ailment, (iii) respon-

1The original ODI takes the measurement of 0 being completely healthy and 50 being com-
pletely disabled, but in this work we follow the general systems performance theory that all
dimensions of human performance are in a form for which a higher numerical value represents
superior performance [Jon00,Kon95]

9



Healthy
Feature

Extraction

Unreliable 

Feature 
Filter

FeatureSelection(·) 

HoldOutStrategy(·) 

Detection of Ailment

FeatureSelection(·) 

HoldOutStrategy(·) 

Correlation to ODI

FeatureSelection(·) 

HoldOutStrategy(·) 

Responsiveness

Patient

(Pre-Op)

Feature

Extraction

Patient

(Post-Op)

Feature

Extraction

Feature Set

Expected

Accuracy

Feature Set

Expected

Accuracy

Feature Set

Expected

Accuracy

(r > 0.75)

Figure 2.2: The data analysis quantifying various motor characteristics of CSM

patients.

siveness to changes in physical conditions, and (iv) correlation to other existing

methods [KKF97, MUC01, FP00]. Test-retest reliability examines the device’s

ability to produce similar results for subjects with similar physiological condi-

tions [FCK07,GHW93]. Detection of ailment investigates the device’s ability to

detect the presence of ailment compared to healthy subjects [WW04]. Respon-

siveness defines the device’s ability to detect changes in physical conditions of

patients as a result of medical treatment [HWL09,DC86]. Correlation to other

existing methods ensures that there exists a degree of correlation between the new

medical device and existing methods [GHW93,GKW97,HN92,LBF97].

Interestingly, some of these methods have been frequently investigated in the

engineering communities. For instance, detection of ailment is often formalized

as a typical machine learning classification problem to discriminate patients from

control subjects [PRM11, PMA13, LGM13a]. The major difference in address-

ing these objectives (ailment detection, responsiveness or correlation) between

the medical and engineering communities is that the medical community usually

incorporate a single feature to construct the metric [NPL11,PBC10] while the en-

gineering community employs feature selection algorithms to construct the metric

10



in a multi-dimensional feature space. A recent work in [PMA13] proposed a motor

function quantification method that employs the test-retest reliability criteria as

a pre-filtering process in order to eliminate features that are not reliable. This

provides a reliable motor quantification metric since the decision function of a

classifier is constructed by polynomially (often linearly) combining those reliable

features. The quantification method proposed in this chapter leverages and ex-

pands upon the method proposed in [PMA13].

The objectives of this chapter are to investigate (i) detection (quantification)

of hand motor deficits of CSM patients, (ii) monitoring of ailment progress after

medical treatment (i.e., responsiveness), and (iii) correlation of the hand motor

function to the perceived level of motor deficits in performing ADL (i.e., correla-

tion to other method). This work employs a feature selection technique that selects

a subset of reliable features in order to address the aforementioned objectives as

illustrated in Fig. 2.2. Addressing these three objectives separately hypothesizes

that the motor characteristics uniquely observed among CSM patients compared

to control subjects may not be necessarily identical to the motor characteris-

tics that have the strongest correlation to the perceived quality of life nor to the

motor characteristics that determine the effectiveness of a medical treatment. Sec-

tion 2.3.1 investigates hand motor features considered in this work. Section 2.3.2

discusses the method for eliminating unreliable features and Section 2.3.3 elabo-

rates the feature selection procedure. The detection of ailment, correlation, and

responsiveness are discussed in detail in Section 2.3.4, Section 2.3.5, and Sec-

tion 2.3.6, respectively.

2.3.1 Hand Motor Features

The motor features are extracted based on the known symptoms of CSM. The

symptoms of CSM that are related to hand motor function include loss of hand

dexterity due to numbness and stiffness, hyperreflexia, weakness, fatigue, and
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tremor [You00]. Hyperreflexia is known as a unique symptom of CSM patients,

which represents exaggerated muscle reflexes such as twitching [You00,LGM13b].

A total of 21 features (10 from sinusoidal and 11 from step waveforms) are ex-

tracted in this work.

The following symptoms are extracted from sinusoidal waveform. Mean abso-

lute error (MAE-SINE) computes the average error between the target sinusoidal

waveform and the patient’s response over the length of the signals:
∑

k |wt[k] −

wr[k]|, where wt and wr represent target waveform and patient’s response, re-

spectively. MAE-SINE is one of the most common metrics in quantifying com-

prehensive hand dexterity [Jon00]. Hyperreflexia in CSM patients is character-

ized as twitching or jerk of hand muscles that result in a sudden peak of the

signal at the initialization or a sudden drop at the discharge of grip force as il-

lustrated in Fig. 2.3. The characteristics of hyperreflexia are quantified using five

features: Min2ZeroErr, Min2ZeroMaxErr, Max2ZeroErr, Max2ZeroMaxErr, and

PhaseShift. Min2ZeroErr computes MAE between the target and the patients’

response from the local minimum to the first zero point of the target waveform

(Fig. 2.3), in order to quantify the error caused by twitching. Min2ZeroMaxErr

computes the maximum error between the two waveforms from the local mini-

mum and the first zero. Max2ZeroErr and Max2ZeroMaxErr are calculated in

a similar manner to quantify the sudden drop from the local maximum. Phase

shift (PhaseShift) represents the average time difference between the zero points of

the target and those of the patient-generated waveforms in order to measure how

quickly patients recover from the overexcited muscle activities. Since a single 45

second-long test contains seven sine cycles, each of these hyperreflexia features is

computed as an average over the seven cycles. Fatigue (FTG-SINE) is quantified

as a change in the MAE between the very first and the very last sinusoidal cycles

since a patient with relatively high fatigue rate would lose their sensory-motor

control over time, and as a consequence, the error rate increases. Tremor is quan-
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Figure 2.3: An example of hyperreflexia which is illustrated with a sudden peak

at the initiation and a sudden drop at the discharge of grip force.

tified using the following three features, which are all computed in the frequency

domain: 2ndFreq, ∆Freq, and ∆Gain. Since the target waveform is a perfect

sinusoidal waveform, it only contains a single peak in the frequency domain at its

fundamental frequency. However, due to a high level of noise (e.g., twitching effect

shown in Fig. 2.3 or tremor) produced by patients, there exists stronger energy

in the higher frequency ranges. 2ndFreq computes the frequency with the second

largest gain after the fundamental frequency of the patient generated waveform.

Patients are expected to have higher second fundamental frequency compared to

healthy subjects. ∆Freq computes the difference between the fundamental fre-

quencies of the target waveform and the patient-generated waveform. ∆Gain is

the gain difference between the two frequencies.

A total of 12 features are extracted from step tests. MAE (MAE-STEP) is com-

puted to represent the comprehensive motor control capacity under step waveform.

Four additional features are computed to quantify the level of hyperreflexia: VEL-

INC, AMP-INC, VEL-DEC, AMP-DEC. VEL-INC computes the velocity of the

grip strength (%MVC per second) when the subject has to activate the strength

from the floor (= 20%MVC) to the ceiling (= 80%MVC). AMP-INC is the maxi-

mum change in the amplitude at the instance of the muscle activation; VEL-INC
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is computed as AMP-INC divided by the associated time. VEL-DEC and AMP-

DEC are computed in a similar manner when the subject has to suddenly release

the grip strength from the ceiling to the floor. Muscle weakness (or muscle en-

durance) is quantified using AVG-CEILING, STD-CEILING, AVG-FLOOR, and

STD-FLOOR. AVG-CEILING and STD-CEILING respectively compute mean

and the standard deviation of the amplitude of the patient’s waveform while the

subject is maintaining the strength at 80%MVC (ceiling). It is hypothesized that

the value of AVG-CEILING would be low and the value of STD-CEILING would

be high when a patient suffers from grip weakness. Similarly, AVG-FLOOR and

AVG-CEILING computes those when the subject is maintaining the grip strength

at 20%MVC (floor). Fatigue (FTG-STEP) computes the change in the MAE

between the first two and the last two step cycles similarly to FTG-SINE. The

hand motor features considered in this work are summarized in Table 2.1 with

their mean values and standard deviations for control subjects, preoperative, and

postoperative CSM patients.

2.3.2 Eliminating Unreliable Features

The proposed work employs a pre-processing that eliminates unreliable features

based on test-retest criteria [PMA13]. In order to evaluate the test-retest re-

liability, the features of the last two (out of three) tests have been used to

compute the intra-class correlation coefficient (ICC), denoted as r, according

to [Ros06, GHW93]. The value of r is in the range of [0, 1]. Conventionally,

r < 0.4 indicates poor, 0.4 ≤ r < 0.75 indicates fair to good, and r ≥ 0.75 indi-

cates excellent test-rest reliability [Ros06]. The r values are computed separately

for the control, the preoperative, and the postoperative CSM groups. This work

employs those features that achieve r ≥ 0.75 for all datasets.
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2.3.3 Feature Selection

The purpose of feature selection is a twofold. First, it identifies a subset of reli-

able features that best addresses the objective of the analysis for the purpose of

minimizing the chances of overfitting. Second, it investigates the expected per-

formance of classification/regression models, which are constructed based on the

selected features.

This work utilizes a wrapper approach for feature selection, which evaluates all

feature subsets within its feature searching space for their classification/regression

performances, and selects the subset that produces the best performance [GE03].

First, the maximum cardinality of a feature subset is constrained based on the

dataset-to-feature ratio as suggested in [PJF12]. For a linear classification model,

the minimum dataset-to-feature ratio is limited to 10:1, and for a quadratic model,

the cardinality of the selected feature set (denoted as F ) should be such that

F×(F+3)/4 does not exceed the number of subjects of the smallest class [PJF12].

For example, the ailment detection involves data samples of 30 preoperative CSM

patients and 30 controls. Thus, the maximum number of features in the selected

subset should be limited by ⌊60/10⌉ = 6 and 9 for a linear and a quadratic model,

respectively. Then, this work employs a forward selection approach for construct-

ing the feature searching space. The forward selection approach starts with an

empty feature set and progressively add a feature that produces the best classifi-

cation/regression performance until its size reaches the maximum cardinality. It

is a greedy searching algorithm (i.e., it cannot retract its decision once a feature is

added to the feature set), which does not guarantee providing an optimal solution

but significantly reduces the computational complexity [GE03]. A leave-one-out

cross validation (LOOCV) is employed to evaluate a feature subset.

The feature selection algorithm is described in detail in Fig. 2.4. The input D

is an N ×M matrix that represents the input dataset, where N is the number of
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data samples, and M is the total number of features. y is an N × 1 vector that

represents the ground truth label, i.e. binary class label for ailment detection

and ODI scores for correlation. F is the maximum allowable cardinality of the

output feature set. The function BuildModel(·) represents an arbitrary machine

learning (training) algorithm. This is the reason for the naming convention of

wrapper that the searching is wrapped around a specific learning algorithm. The

function Predict(·) computes the most likely label for the given testing data based

on the model created by BuildModel(·). Evaluate(·) is a function that evaluates

the classification/regression performance in a LOOCV, e.g. misclassification rate

for a binary classification problem. In summary, this feature selection algorithm

returns a feature subset that produces the best prediction performance given a

dataset D.

Another important question is the expected classification/regression perfor-

mance of the model based on the selected feature subset, when the model is indeed

deployed and tested on an independent dataset. A hold-out strategy2 is employed

to address this important question [LGM13a,BZ08]. The hold-out strategy con-

tains two layers of cross validation, of which are both LOOCV in this work. The

outer LOOCV divides the entire dataset into a validation set (i.e., the left-out

data) and a learning set (i.e., the remaining dataset). The learning set is then

used as the input to the FeatureSelection(·) procedure (Fig. 2.4) in order to find

out the best feature subset using another (inner) layer of LOOCV. The classifi-

cation/regression model is constructed using the learning set that is projected on

the selected feature subset. The performance of the constructed model is evalu-

ated using the validation dataset. The expected performance is then computed as

the average classification/regression accuracy evaluated on the validation datasets

over the outer cross validation. It is noteworthy that a total of N feature sub-

sets are selected as a result of the hold-out strategy (i.e., the outer LOOCV). In

2It is also known as a nested cross validation in [PMA13].
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1: procedure FeatureSelection(D, y, F )

2: P = [1 · · ·M ] {initial index for the entire feature pool}

3: S0 = ∅ {initial feature set is null}

4: for i = 1 to F do

5: for j = 1 to |P | do

6: D′ = D[:, (Si−1 ∪ P [j])]; {adding a feature to evaluate}

{starting LOOCV}

7: for n = 1 to N do

8: Dts = D′[n, :]; {testing set}

9: yts = y[n]; {testing label}

10: Dtr = D′ −Dts; {training set}

11: ytr = y − yts; {training label}

12: θ = BuildModel(Dtr, ytr); {building classification / regression model}

13: y′[n] = Predict(Dts, θ); {make prediction}

14: end for

15: RP [j] = Evaluate(y, y′); {evaluating current set}

16: end for

17: Si = Si−1 ∪ P [argmax(RP )] {adding the best feature}

18: RF [i] = max(RP ) {performance at the cardinality i}

19: P [argmax(RP )] = ∅ {removing the selected feature}

20: end for

21: return Si∗ where i∗ = argmax(RF )

Figure 2.4: The feature selection procedure for a given dataset D with its label y

and the maximum cardinality F .
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1: procedure HoldOutStrategy(D, y, F )

2: for n = 1 to N do

3: Dv = D[n, :]; {validation set}

4: yv = y[n]; {validation label}

5: Dl = D −Dv; {learning set}

6: yl = y − yv; {learning label}

7: F = ComputeMaxCardinality(|D|);

8: s = FeatureSelection(Dl, yl, F );

9: θ = BuildModel(Dl[:, s], yl);

10: y′[n] = Predict(Dv[:, s], θ);

11: end for

12: return Evaluate(y, y′);

Figure 2.5: The hold-out strategy that computes the expected classification /

regression performance accuracy.

theory, if the employed dataset is generic enough to represent the target popula-

tion, the N feature subsets should be identical or share similar features to each

other and to the feature subset selected when the entire dataset is inputted to

FeatureSelection(·) of Fig. 2.4.

2.3.4 Detection of Ailment

In order to quantify the severity of hand motor deficits in CSM patients, the

problem is formalized as a binary classification between the patient data obtained

prior to the treatment and the age-matched control data. This would provide in-

formation regarding hand motor characteristics that are uniquely observed among

CSM patients.

Three different classification algorithms are used as the training model (i.e.,

BuildModel(·) in Fig. 2.4): (i) Support Vector Machine with linear kernel (SVM),
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(ii) Linear Discriminant Analysis (LDA), (iii) Quadratic Discriminant Analysis

(QDA). The expected classification accuracy (Evaluate(·) in Fig. 2.5) is evaluated

using the sum of the true positive rate and the true negative rate.
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2.3.5 Correlation to Perceived Motor Deficits

The correlation of the handgrip function to the perceived motor deficits is for-

mulated as a regression problem using both pre- and postoperative data obtained

from 17 CSM patients (i.e., N = 34). ODI scores have been used to represent the

perceived motor deficits. The correlation to mJOA scores was not investigated

since the variation of the scores among CSM patients was not granular enough

to form a regression; the minimum and the maximum scores were 15 and 18,

respectively. Furthermore, ODI has a larger number of questionnaires that are

closely related to motor functions required for ADL. This analysis would provide

insights into the hand motor characteristics that have significant correlation to

the perceived quality of life, which can be especially useful for clinicians, thera-

pists, patients, and care-givers for various reasons including (i) applying stratified

rehabilitation process, (ii) properly adjusting home and community appliances,

and finally (iii) improving the quality of life [VKW11,KWK96].

The regression models tested in this work are (i) Support Vector Regression

with linear kernel (SVR-L), (ii) Support Vector Regression with non-linear sigmoid

kernel (SVR-R), and (iii) Multivariate Linear Regression (MLR). The expected

regression accuracy (Evaluate(·)) is evaluated using the mean error rate (MER)

between the predicted value and the actual value.

2.3.6 Responsiveness

Responsiveness investigates the ability of the proposed system to detect any

changes in the values of motor features depending on the patients’ operation

conditions. As a consequence, this problem is formulated as a binary classifica-

tion problem between the patients whose motor functions have improved (i.e.,

functional patients) and the patients whose motor functions have deteriorated or

no change (i.e., non-functional patients) as a consequence of surgery, similarly
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to [DC86]. The functional patients are defined as those whose postoperative ODI

and mJOA values have both improved compared to their preoperative values.

In our study, 12 patients were categorized as functional and 5 patients as non-

functional; this determines the input y for Fig. 2.4 and Fig. 2.5. Similarly, the

difference between postoperative and preoperative values were computed for all

motor features to be used as the input data: D for HoldOutStrategy(·). Three

different classification algorithms were again used as the training model: SVM,

LDA, and QDA. The accuracy evaluation function is also defined as the one in

Section 2.3.4.

2.4 Results

2.4.1 Reliability of Features

Table 2.1 summarizes the ICC for all features, where unreliable features are in-

dicated with shading. This table further provides p-values of analysis of variance

(ANOVA) for intra-variation along with the r values.

2.4.2 Detection of Ailment

Table 2.2 summarizes the results of the feature selection that returns (i) the se-

lected feature subset and (ii) the expected accuracy. QDA outperformed other

classifiers in terms of its expected classification performance. The selected feature

subset for QDA (FeatureSelection(·)) is composed of MAE-STEP, Max2ZeroErr,

and 2ND-Freq.

The expected classification accuracy was as follows: true positive rate (TPR)

of 0.737, true negative rate (TNR) of 0.842, and average classification accuracy

(ACR) of 0.789. The selected feature subsets and their frequencies during the

HoldOutStrategy(·) are summarized in Table 2.2. It is noteworthy that the most
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Figure 2.6: (a) The regression plot produced based on the hold-out strategy, and

(b) its Bland-Altman plot.

frequently selected feature set during the hold-out strategy is identical to the

selected feature set of the entire dataset.

2.4.3 Correlation to Perceived Motor Deficits

SVR with sigmoid kernel produced the best expected regression accuracy as it is

summarized in Table 2.3. The selected feature subset for this non-linear SVR on

the entire dataset contains Min2ZeroErr, ∆Freq, and VEL-INC.

The expected regression accuracy based on the hold-out strategy produced

MER = 0.110 and R2 = 0.555. The regression outcomes and the Bland-Altman

plot are illustrated in Fig. 2.6. The selected feature subsets from the hold-out

strategy are summarized in Table 2.3 (bottom). The most frequently selected

feature subset on the outer layer of the LOOCV was identical to the feature

subset selected from the entire dataset: <Min2ZeroErr, ∆Freq, VEL-INC>.

2.4.4 Responsiveness

The analytic results for responsiveness are summarized in Table 2.4. Liner SVM

produced the best classification accuracy. The selected features from Fig. 2.4 are
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Table 2.2: Expected classification performance and the best feature set for ailment

detection (top), and the selected feature sets from the outer cross validation of

the hold-out strategy (bottom).

TPR TNR ACR Selected Features

SVM 0.842 0.632 0.763
MAE-STEP, AVG-FLOOR,

VEL-INC, PhaseShift

LDA 0.842 0.632 0.763
MAE-STEP, STD-FLOOR,

AMP-INC

QDA 0.737 0.842 0.789
MAE-STEP, 2ND-Freq

Max2ZeroErr

Selected Features Freq

MAE-STEP, 2ND-Freq, Max2ZeroErr 18

MAE-STEP, 2ND-Freq, Max2ZeroErr, Min2ZeroErr 13

MAE-STEP, Max2ZeroErr, Max2ZeroMaxErr, STD-FLOOR 1

MAE-STEP, 2ND-Freq, AVG-CEIL, AVG-FLOOR 1

Max2ZeroMaxErr, STD-FLOOR, Min2ZeroErr, VEL-DEC 1

2ND-Freq, Max2ZeroErr, STD-FLOOR, VEL-DEC 2

Max2ZeroMaxErr, Min2ZeroErr, AMP-INC, VEL-DEC 2

Total 38
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Table 2.3: Expected regression performance and the best feature set (top), and

the selected feature sets from the outer cross validation of the hold-out strategy

with Sigmoid SVR (bottom).

MER R2 Selected Features

MLR 0.139 0.153
Max2ZeroErr

∆Freq, AVG-FLOOR, VEL-INC

SVR - Linear 0.133 0.302
MAE-SINE, 2ndFreq

∆Freq, VEL-INC

SVR - Sigmoid 0.110 0.555
Min2ZeroErr, ∆Freq

VEL-INC

Selected Features Freq

Min2ZeroErr, ∆Freq, VEL-INC 16

Max2ZeroMaxErr, VEL-INC, VEL-DEC 8

Max2ZeroMaxErr, ∆Freq, VEL-INC, VEL-DEC 5

Max2ZeroMaxErr, ∆Freq, 2NDFreq 2

Max2ZeroMaxErr, ∆Freq, 2NDFreq, VEL-DEC 1

Min2ZeroErr, Max2ZeroMaxErr, VEL-INC, VEL-DEC 1

Min2ZeroErr, Max2ZeroErr, VEL-INC, VEL-DEC 1

Total 34
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Table 2.4: Expected classification performance and best feature set for respon-

siveness (top), and the selected feature sets from the outer cross validation of the

hold-out strategy with SVM (bottom).

TPR TNR ACR Selected Features

SVM 0.917 0.800 0.882 Max2ZeroErr, AVG-FLOOR

LDA 0.917 0.600 0.824 Max2ZeroErr, STD-FLOOR

QDA 0.917 0.600 0.824 Max2ZeroErr, AVG-FLOOR

Selected Features Freq

Max2ZeroErr, AVG-FLOOR 15

AVG-FLOOR, STD-FLOOR 1

Min2ZeroErr, Max2ZeroErr 1

Total 17

Max2ZeroErr and STD-FLOOR.

The expected accuracy is computed as TPR = 0.917, TNR = 0.800, and ACR

= 0.882. The selected feature sets from the HoldOutStrategy(·) are summarized

in Table 2.4. The most frequently selected feature set from the hold-out strategy

was again identical to the selected feature of the entire dataset.

2.5 Discussion

2.5.1 Feature Reliability

As shows in Table 2.1, most features showed excellent reliability. Furthermore,

none of the features showed statistical significance for intra-class variability. There

exist three features with ICC less than 0.75 (i.e., PhaseShift, FTG-SINE, and

FTG-STEP), which are removed from all the analyses.
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2.5.2 Analytic Results

The feature set selected by FeatureSelection(·) for the ailment detection contains

MAE-STEP, 2ndFreq, and Max2ZeroErr. Among the selected features, MAE-

STEP is the most discriminant feature. The p-value of MAE-STEP (p < 0.0071)

was significantly lower than 2ndFreq (p < 0.041) and Max2ZeroErr (p < 0.013).

Furthermore, MAE-STEP was the only feature that was selected by all three

tested classifiers (Table 2.1). The feature subset selected by FeaturesSelection(·)

was identical to the feature subset that was most frequently selected during the

hold-out strategy. Moreover, the most frequently selected subset was a close subset

of the second most frequently selected subset as shown in Table 2.2. These two

subsets were selected 31/38 = 81.6% during the outer cross validation of the hold-

out strategy, which indicates that <MAE-STEP, 2ndFreq, Max2ZeroErr> is the

subset that well defines the motor characteristics of our CSM patients.

Table 2.3 shows that the non-linear regression model (sigmoid SVR) performs

significantly better compared to the two linear models (MLR and linear SVR).

This demonstrates that there exist non-linear relationships between the predic-

tors and the ODI score. The selected features for sigmoid SVR are Min2ZeroErr,

∆Freq, and VEL-INC. It is noteworthy that all of these features belong to hy-

perreflexia category, which quantifies how accurately patients control their fine

hand muscles at sub-maximal forces. Furthermore, most of the features selected

throughout the hold-out strategy also belong to the hyperreflexia category (Ta-

ble 2.3). This finding addresses similar conclusions made in [KGG05, MI94],

and [SN00] that precise control of the sub-maximal grip strength is the most

important motor function required in daily activities (rather than maximum vol-

untary contraction). Given its highly subjective nature of ODI [Fin10] and the

fact that the regression results are generated based on two layers of cross valida-

tion, the results in Fig. 2.6 and Table 2.3 are comparable to other studies. ODI

has been compared to other measures: Pearson’s r = 0.83 for Pain Disability In-
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dex [GHW93], r = 0.62 for Visual Analogue Scale [GHW93], r = 0.62 for McGill

Pain Questionnaire [HN92], r = 0.77 for Short Form-36 [GKW97], and r = 0.66

for Roland-Morris (RM) questionnaire [LBF97]. The correlation coefficient of the

regression was r = 0.81. Especially in [FP00], the Bland-Altman plot between

ODI and RM shows that the magnitude of the limit of agreement is approximately

equal to 0.32, which is comparable to this work’s result: 0.26. Fig. 2.6 (a) and (b)

show that the prediction results are overestimated when the ground truth ODI

value is less than 0.7, and underestimated when greater than 0.7. It is because

most of the ODI scores of the patients were established between 0.55 and 0.85,

and as a consequence, the predicted results are forced to fit within the range; the

mean and the std. dev. of the ODI scores of both pre- and postoperative CSM

patients were 0.70 and 0.20, respectively.

The selected features that best discriminate functional from nonfunctional

patients after decompression surgery are Max2ZeroErr and AVG-FLOOR. The

improvement in Max2ZeroErr scores for the functional and the nonfunctional

groups were −4.41 and 5.24 (p < 0.0037), respectively. This implies that the

Max2ZeroErr for the functional group has been significantly reduced compared

to the nonfunctional group. In a similar manner, the improvement in AVG-

FLOOR was −3.03 for the functional and −0.77 for the nonfunctional group

(p < 0.080). This feature set was also the most frequently selected feature subset

from the HoldOutStrategy(·) with 15/17 = 88.2%. Other two features also share

similar motor functions as shown in Table 2.4. It is especially noteworthy that

Max2ZeroErr was selected for all three analyses performed in this chapter. This

result highlights the medical finding that hyperreflexia is a common symptom of

CSM patients [You00].
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2.5.3 Limitations and Future Works

All the classification and regression performances reported in this chapter are com-

puted using the hold-out strategy, which produces more fair estimate rather than

optimistic estimate [PMA13]. However, the small sample size makes it difficult to

generalize our findings to the general CSM population. This was highlighted in

the correlation analysis that we need CSM patients with more diversified motor

functions in order to improve the (underestimated and overestimated) regression

results (Fig. 2.6). Nonetheless, the selected feature subsets of all analyses (de-

tection, correlation, and responsiveness) were identical to the most frequently se-

lected feature subsets of the hold-out strategy. Furthermore, the selected subsets

from the outer cross validation of the hold-out strategy shared similar features,

which demonstrates that there exists a consistent motor pattern among the tested

dataset.

The classification performances reported in this chapter (i.e., ACR of 78.9%

for ailment detection and 88.2% for responsiveness) would not be ideal to be

used as a diagnostic tool for CSM. This is because the proposed device quantifies

hand motor function of patients rather than analyzing anatomic or neurologic

markers. However, the short-duration tracking test (4 minutes and 30 seconds)

can be effectively used as an assistive screening/monitoring tool, since CSM is

closely related to the aging process, and is known to be genetically inherited

[You00,Kli10].

Due to its simplicity of use, short testing time, and inexpensive cost, this device

has a great potential for remote patient monitoring, which has been discussed in

a previous study [LWN12]. For this purpose, the wireless data communication

would be necessary to enhance the user interface. Furthermore, gamification of

the system to improve patient adherence to the system (for the purpose of frequent

monitoring) would be an interesting application, similarly to [FCZ11]. Future
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works should also incorporate stratified analysis based on clinical variables such

as the location of the herniated disk, the months after injury, or the values of

ODI. It is expected that these would produce more sophisticated detection model

based on features that are uniquely observed among the tested group.

2.6 Conclusion

This chapter introduced a quantification measurement of hand motor function

in CSM patients based on target tracking tests using a handgrip device. Three

different quantification objectives were addressed using a reliable feature selection

technique: detection of ailment, correlation to the perceived motor deficit, and the

responsiveness. The hold-out strategy is employed to compute the expected clas-

sification/regression performance, which achieved ACR = 78.9%, MER = 11.0%,

and ACR = 88.2% for detection, correlation, and responsiveness, respectively.

This pilot study validates the validity and reliability of the handgrip device for

quantifying hand motor functions in CSM patients. We believe that this study

enables new research opportunities in analyzing various types of motor character-

istics in spondylotic myelopathy, which is a growing chronic condition.
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CHAPTER 3

Assessment of Overexcited Hand Movements

3.1 Objectives

Patients who suffer from neuro-degenerative diseases (e.g., stroke and Parkin-

son’s disease) or degenerative spinal cord disorders often carry movement deficits

in upper extremities [Mor00b, LWN12]. Among many motor symptoms associ-

ated with these ailments, we are particularly interested in hyperexcitability in

hand muscles, which is defined as a motor disorder characterized by exagger-

ated tendon jerk reflexes [FYK80] due to an excessive velocity increase in mus-

cle tone [LHC02b]. Handgrip hyperexcitability creates involuntary forces during

grasping performance, which intensely restrict daily activities requiring sophisti-

cated hand muscle manipulation such as eating, clothing, and bathing.

Traditional assessment methodology for hyperexcitability relied on subjective

observations of muscle behavior, and as a result, many attempts have been made

to objectively quantify the level of hyperexcitability. Existing solutions to quan-

tify hyperexcitability of muscle movements have concentrated on techniques such

as clinical scales, Electromyographic (EMG), and biomechanics. However, these

techniques are often highly complicated to be deployed at clinical (or in-home)

settings, large in size, and extremely expensive. As a consequence, it was not eco-

nomically feasible to deploy these techniques for a large patient population, and

this creates a need for an accurate and affordable assessment system [KZB04].

Sensing platforms that can be easily deployed on the body have been actively
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researched and are considered as alternative approaches to diagnose, to quantify,

and to rehabilitate patients with motor deficits such as in [HRS12]. Body sensing

systems utilize accurate, simple, and inexpensive sensors to collect physiological

data in order to quantify motor performance [LGa13a, LGa13b]. These charac-

teristics allow (i) easy ways to collect sensory data either pervasively or from a

simple motor task, (ii) economic deployment of the system for a large patient pop-

ulation, and (iii) improvement in clinical benefits for patients. Clinical benefits

of body sensing systems for assessing motor abnormalities include (i) economic

benefits [HBe05], (ii) frequent and continuous measurement of motor function

progress over time, (iii) quantifying the effectiveness of medical treatments, such

as surgical operations or medications, and (iv) early diagnosis of motor function

for potential patients.

In this chapter, a low-cost system that objectively quantifies the level of hy-

perexcitability in hand dexterity is introduced. A term activation hypertonia is

used to describe the hyperexcitability during voluntary grip contraction (details

are provided in Section 3.4). The proposed system utilizes a lightweight handgrip

sensory device to assess the level of activation hypertonia, which makes the system

highly portable. The system provides a simple target tracking task to examine

fine hand motor skills for patients with cervical spinal cord disorders [Jon00]. The

collected body signals are then analyzed by a series of four signal processing units:

(i) the pre-processing unit, (ii) the abnormality (i.e. activation hypertonia) detec-

tion unit, (iii) the abnormality analytic unit, and (iv) the parameter extraction

unit. The preprocessing unit performs a low-pass filter to reduce noise in the raw

signals, and segments the signals into a number of subsignals. The detection unit

statistically determines whether a resultant subsignal contains the outcome of the

exaggerated muscle tone using machine learning algorithms. If activation hyper-

tonia is noted, the analytic unit performs an in-depth analysis to locate important

geometric points using dynamic time warping (DTW). The parameter extraction
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unit extracts important variables that characterize the severity of activation hy-

pertonia. The system has been clinically tried in cohort study under collaboration

with the UCLA Department of Neurosurgery in order to evaluate its performance.

The rest of the chapter is organized as follows. Related works are discussed in

Section 3.2. Section 3.3 provides the overview of the proposed system in detail. In

Section 3.4, the definition of activation hypertonia and its physiological character-

istics are discussed. Section 3.5 elaborates the signal processing techniques that

extract important information about activation hypertonia. The experimental

results are presented in 3.6, followed by concluding remarks in Section 3.7.

3.2 Related Works

Exaggerated muscle movements such as muscle overactivity and spasticity in up-

per limbs have been actively researched. Existing methods to quantify the level

of hyperexcitability in hand muscle usually involve passive resistance (external

torque) against the applied patient-generated force. In [LHC02a] and [LBK99],

torque based devices are used to quantify spastic movements in elbow flexors. Es-

pecially in [LHC02a], the authors introduced a new measurement metric based on

a second order linear model of the spastic velocity in order quantify the viscous

component of hypertonia. Some works combined torque-based resistance devices

with EMG in order to analyze the changes in muscle tone (i.e. electric signal

generated by muscles) during the spastic movement [PMD00,dPP03].

Although the aforementioned works focus on measuring exaggerated muscle

performance, the fundamental research objective is different from what has been

discussed in this work. That is, the aforementioned works focus on muscle ex-

citability during passive motor functions, where as the proposed system examines

the exaggerated muscle behavior during voluntary grip contraction. Moreover, the

aforementioned works involve apparatuses that are extremely large, expensive, and

33



complicated to use in an in home setting, which makes the systems unsuitable for

portability and which would not be scalable to a large patient population.

A recent study reports that very few measurement systems exist to quantify

the level of spastic muscle during functional activity (i.e. during voluntary grip

contraction or relaxation) [Azz12]. In [Azz12], the author uses the maximal grip

strength in order to measure the level of spasticity, although the grip strength

reflects the comprehensive motor performance of patients. Similarly, in [NH05],

a case of spasticity during voluntary grip contraction is reported, and the overall

grip strength has been used to generically represent the overall motor function.

Clinical scales are also frequently used to assess fine motor performance (in-

cluding hyperexcitability), which are often constructed based on patient-reported

surveys or observation of simple muscle performance. For example, the Modified

Ashworth Scale (MAS) is the most common measurement for muscle spasticity

in clinics nowadays [BNH12, BS87]. Furthermore, functional measures of hand

performance such as Wolf Motor Functional Test (WMFT) have been automated

to generically assess the spasticity [BNH12,HRS12,WPM10].

However, the above methods often rely on subjective measurements (e.g., clin-

ical scales) or on quantitative methods that represent comprehensive hand muscle

movement (e.g., grip strength). On the other hand, the proposed method quanti-

fies the degree of hyperexcitability in hand muscles based on physiological motor

function observed during voluntary hand contraction. As a result, parameters

from various dimensions of motor functions (i.e. grip force, time, and velocity)

can be accurately analyzed. This work is an extension of an abstract [LGa13b] in

which the medical significance of hyperexcitability during voluntary contraction

is highlighted. This chapter focuses on the signal processing techniques of the

acquired body signals in order to extract information reflecting the overexcited

muscle behavior.
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(a) (b)

Direction ofthe resistance

Figure 3.1: (a) The digital handgrip device used in its resting position. (b) The

handgrip when the handle is moved to its maximum displacement. The direction

of the spring resistance is illustrated in arrows.

3.3 System Overview

The proposed system consists of the digital handgrip device, the software system,

and the signal analytic framework. The handgrip device collects sensory data from

the participating patients and delivers it to the software system. The functional

objective of the software system is to guide the patient to follow the examination

procedure, to provide visualized feedback, and finally to store the captured data.

The captured data is then processed by the signal analytic framework in order to

extract information related to activation hypertonia in hand dexterity. The digital

handgrip device and the software system are discussed in detail in the following

two subsections.

3.3.1 Sensory Device

The handgrip device is illustrated in Fig. 3.1, which is composed of three major

components: the handle, the springs, and the displacement sensor.
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The handle is connected to the main body of the device by three springs, which

allow the patients to make voluntary grasping performance. The three replaceable

springs with known constants create resistance against the direction of the grip

force as shown in Fig. 3.1 (b). Furthermore, these springs allow the system to be

calibrated to individuals with different ranges of maximum voluntary contraction

(MVC)1. The handle is also connected to the displacement sensor embedded in

the bottom of the main body to locate the position of the handle. The spring

constants and the displacement information can be combined to measure the grip

strength in standard units such as Newton using Hooke’s law: F = −k · x, where

k is the spring constant and x is the displacement.

3.3.2 Software Framework

The software starts the examination process by performing another calibration

that measures the MVC. The reason behind this additional calibration is to per-

form the examination that is maximally accommodated to individuals with various

levels of MVC since changing springs may not provide sufficient granularity.

Upon completion of the calibration process, subjects are tasked to track a

moving sinusoidal waveform by adjusting their grip strength. Fig. 3.2 illustrates

an examination provided by the software. The red sinusoidal waveform is the

target waveform that moves to the left at a constant speed. The maximum ampli-

tude of the waveform is equal to the subject’s MVC as a result of the calibration

process. The blue circle located in the middle of the x-axis moves freely in y-axis

according to the grip strength applied to the sensory device. The green waveform

appearing in the left half of the screen is real-time feedback of the subject’s past

performance. The examination is 45 seconds long and it contains seven sinusoidal

cycles (i.e. the frequency of the sinusoidal waveform is approximately 15.6Hz),

and the data is stored for post-processing.

1MVC is defined as the maximum voluntary grip force of an individual
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Figure 3.2: Exemplary illustration of the target tracking task used in the proposed

system.

3.4 Background

An example of an instance of activation hypertonia and a normal performance

is provided in Fig. 3.3 (a) and (b), respectively. As illustrated, the example in

Fig. 3.3 (a) displays exaggerated muscle movement during voluntary initiation of

the muscle contraction, and the example in Fig. 3.3 (b) shows a smooth curve

without any notable shooting effect. This shooting effect is only observed among

patients with hand movement deficits2 (e.g., patients with cervical spondylotic

myelopathy in this study). The term activation hypertonia is used to describe

this physiological phenomenon, which is voluntarily initiated but not effectively

controlled.

The activation hypertonia shows motor mechanism similar to hyperexcitability

of the stretch reflexes in elbow or knee [LHC02b]. The exaggerated muscle move-

ment is induced by sufficiently fast contraction velocity. Then, reactive muscle

response starts to decrease the contraction velocity. For example, in Fig. 3.3 (a),

2The shooting effect has been sometimes observed among healthy subjects with age greater
than 80. However, the amplitude of the shooting was minor and not comparable to the ones
generated by patients.

37



(a)

0

20

40

60

80

100

n
o

rm
a

li
ze

d
 p

re
ss

u
re

(%
M

V
C

)
Ah

th

Ar

tr

(b)

0

20

40

60

80

100

(C)

(A)

(B)

n
o

rm
a

li
ze

d
 p

re
ss

u
re

(%
M

V
C

)

Figure 3.3: (a) An example of the exaggerated muscle movement during voluntary

contraction. (b) An example of a typical normal muscle behavior.

annotation (A) represents a point where the contraction velocity is at its maxi-

mum, and this implies that the reactive muscle response is initiated to decrease the

contraction velocity. At (B), the reactive response dominates the muscle move-

ment and the spike starts to decrease. Finally at (C), the motor performance is

adjusted to the target waveform.

Important parameters that characterize the exaggerated muscle behavior can

be computed if geometric annotations (B) and (C) are accurately located. Thus,

the proposed signal processing focuses on detecting the appearance of such an ab-

normal hand movement and accurately locating these important geometric anno-

tations. The signal processing framework is composed of a series of four sub-units:

(i) the pre-processing unit, (ii) the abnormality detection unit, (iii) the in-depth

analytic unit that annotates the important geometric points, and (iv) the param-

eter extraction unit. A graphical summary of the signal processing framework is

provided in Fig. 3.4.
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Figure 3.4: Graphical overview of the signal processing framework.

3.5 Quantification of Activation Hypertonia

3.5.1 Pre-processing Unit

The pre-processing unit performs a fifth-order butterworth low-pass filter in order

to smooth out the signal. This process allows the geometric shape of the signal

to be visualized more clearly and improves the accuracy of annotating important

geometric points within the signal. The cut-off frequency is set to 18Hz given

that the sample frequency is 32Hz and the frequency of the sinusoidal waveform

is 15.6Hz. Then, the filtered time-series signal, which contains seven sinusoidal

cycles, is partitioned into seven subsignals that represent muscle contraction (i.e.

rising parts of the sinusoidal waveform where its derivative is greater than zero).

An example of the results of the pre-processing unit is illustrated in Fig. 3.5 in

order to help visualization.

3.5.2 Abnormality Detection Unit

The detection unit utilizes a machine learning algorithm to detect the appearance

of the exaggerated muscle performance. For example, in Fig. 3.5, only the third

to sixth segments contain instances of activation hypertonia, and thus the analysis

should be performed limited to these segments.
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Figure 3.5: An example of the results of the pre-processing unit. (Top) The

raw input time-series. (Middle) The low-pass filtered time series. (Bottom) The

partitioned subsignals representing muscle contraction.

A total of six features are extracted to be used in the classification process.

These features represent variables that generically differentiate the geometric

shape of the signals with and without the exaggerated muscle behavior. The

first feature is the maximum velocity of the signal (i.e. maximum amplitude of

the derivative). The second feature computes the difference between the maxi-

mum and the minimum velocity. The third feature considers the number of local

maxima found in the patient’s response. The fourth and fifth features compute

the maximum amplitude and the relative location (to the length of the segment)

of the local maxima, respectively. The sixth feature computes the mean absolute

difference between the patient’s response and the target sine waveform since the

segments containing exaggerated muscle performance usually have higher error

rate. The proposed system employs a binary Support Vector Machine (SVM) for

the classification algorithm. The classification of a new signal detects whether the

signal contains the exaggerated muscle performance or not.
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3.5.3 Abnormality Analytic Unit

The abnormality analytic unit employs a dynamic time warping (DTW) algorithm

in order to extract the information about the geometric annotations discussed in

Section 3.4 (e.g., (A), (B), and (C) in Fig 3.3 (a)). The subsignal containing

an instance of activation hypertonia is compared against a template that best

represents the exaggerated muscle performance in the training data3. A template

selection technique, which is similar to the work introduced in [GJ10] and [H 10],

is performed to choose a representative template.

The template selection technique is constructed as follows. The output tem-

plate is denoted as T . Further, D represents a subset of the subsignals within the

training data that contain instances of the activation hypertonia. A single sub-

signal in D is represented as τi, where 1 ≤ i ≤ |D|. Then, the template selection

starts its process by constructing a matrix M that represents the unnormalized

distance between all segments in D:

Mi,j = dist(τ
′

i , τ
′

j),

where τ
′
is the derivative of the subsignal τ , and dist(τ

′
i , τ

′
j) is the unnormalized

distance between the warped subsignals τ
′
i and τ

′
j . The DTW is performed on

the derivative of a signal because hyperexcitability of contraction is known to

depend on velocity, and the geometric annotations are also highly relevant to the

derivative. Note that M is a symmetric matrix (Mi,j = Mj,i) and its diagonals are

equal to zero since the distance between two identical signals is zero (Mi,i = 0).

Then, the template T is selected to be the subsignal that has the minimum

average distance to all other signals:

T = argmin
i∈D

1

|D| − 1

∑
j ̸=i∈D

Mi,j, (3.1)

where |D| is the total number of subsignals in D.

3Note that this training data is identical to the training data discussed in Section 3.5.2
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Given that the training signals are all annotated for their important geometric

points, the result of the DTW between the template and the testing subsignal can

easily locate these points by warping. Note that all signals are height-normalized

(to the one with shorter height) before the DTW.

3.5.4 Parameter Extraction Unit

The parameter extraction unit computes the parameters that characterize activa-

tion hypertonia as discussed in Section 3.4. A total of six parameters are extracted

using the geometric annotations computed as a result of the abnormality analytic

unit.

The six parameters are labeled as Ah, th, vh, Ar, tr, and vr. Ah and th

represent the maximum amplitude and the time required to reach the peak of

the hyperexcitability, respectively. Since the hyperexcitability of contraction or

stretch reflexes are known to depend on velocity, the velocity to reach the peak is

also an interesting parameter (vh = Ah/th). Similarly, Ar, tr, and vr represent the

reactive response amplitude, the time required to reach the local minimum, and

the associated velocity (vr = Ar/tr), respectively. A graphical example of these

parameters is provided in Fig. 3.3 (a).

3.6 Experimental Results

Table 3.1: Classification results of the leave-one-patient-out cross validation.

Patient ID P1 P2 P3 P4 P5 P6 P7 P8 P9 Average

TP Rate 0.98 0.97 0.97 1.00 1.00 1.00 1.00 1.00 0.98 0.99

TN Rate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

42



3.6.1 Clinical Cohort Study

The examination procedure has been approved by the local institutional review

board. The trial has been conducted for 12 months on 9 patients (mean age of 58.2

with standard deviation of 13.5) with Cervical Spondylotic Myelopathy (CSM).

CSM compresses the spinal cord in the cervical area and causes hand movement

deficits such as loss of hand dexterity, weakness, and coordination problems. All

participated patients received a surgical spinal decompression, which decompresses

the pressure applied on the pinched nerves.

Patients have participated in the study at least once prior to the operation and

at one week, one month, and three months following the operation. At each clinical

visit, patients performed the tracking examination exactly three times, which

resulted in a total of 141 examinations. As discussed in 3.5.1, each tracking result

produces seven subsignals. However, the very first subsignal for all examination

results have been discarded from the analysis since some patients started the

examination while holding the blue circle in the middle and some just left the

circle at zero, which produced unnecessary diversity in its geometric shape. As a

result, a total of 846 = 141 · 6 subsignals were considered in this analysis. Among

846 signal subsignals, |D| = 186 (≈ 22.0%) signals showed the exaggerated muscle

movement, and they all have been annotated for the important geometric points.

3.6.2 Results of the Analytic Framework

This section presents the experimental results of the technique discussed in Section

3.5. A leave-one-patient-out cross validation is used to evaluate the performance of

the proposed method without polluting the results in (i) detecting the appearance

of activation hypertonia and (ii) locating the important geometric annotations.

The classification results for detecting the appearance of activation hypertonia

are summarized in Table 3.1. In this table, TP Rate and TN Rate represent true
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positive and true negative rate, respectively, and the positive class is defined as

the signals that contains the exaggerated muscle behavior and the negative class

as the signals with normal muscle behavior.

When the system detects the appearance of the exaggerated muscle behavior

in the signal, it performs the DTW using a template computed by Eq. (3.1). It is

interesting to note that a signal belonging to P6 is selected as a template for all

cross-validations except for P6. When P6 was examined as the left-out patient, a

signal that belongs to P1 was selected as its template. This shows the robustness

of the results of the proposed system in terms of its consistency in its geometric

shape that the same template was chosen for all data (except one case for the left-

out patient P6). The DTW annotated the important geometric points with 99.5%

(= 185/186) accuracy for all results. Only one signal has been mis-annotated for

its unusual geometric shape. Some of the correctly annotated as well as the one

incorrectly annotated result are illustrated in Fig. 3.6.
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Figure 3.6: Examples of the results of the analytic framework. (a) Correctly

annotated result of the test signal that is has similar dynamic geometric shape

as the template (b) Correctly annotated result of the test signal that has more

dynamic placement of the annotation compared to the template. (c) Incorrectly

annotated signal due to an additional peak
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3.6.3 Significance of the Analysis

In the previous section, we demonstrated the accuracy of the method to detect the

appearance of activation hypertonia and to annotate important geometric points.

In this section, the medical significance of the computed results is validated by

comparing them to the physical condition of the patients.

First of all, the six parameters discussed in Section 3.5.4 are computed for all

subsignals that contain an instance of the exaggerated muscle behavior. Then,

the parameter values are averaged among examination results produced per clin-

ical visit. For example, three examinations are performed per clinical visit, and

six subsignals are produced per examination. Thus, each parameter can be com-

puted by averaging the values of at most 18 subsignals containing the exaggerated

muscle performance. Addition to the six parameters, one more parameter, which

counts the number of subsignals that contain the exaggerated muscle behavior, is

considered.

Then, parameter values obtained before the surgical operation and the pa-

rameter values collected three-month or later after the operation are compared in

terms of percentage of improvement. Suppose that ρprei and ρposti represent the

preoperative and postoperative values of the parameter i (1 ≤ i ≤ 7), respectively.

The percentage of improvement is computed as PIi =
(
ρposti − ρprei

)
/ρprei .

Patient’s also have evaluated their improvement in motor function using Os-

westry Disability Index (ODI), a validated motor functional scale [FP00]. Accord-

ing to [STH95], the patients with ODI ≥ 0.6 are considered to in the functional

group, and the patients with ODI < 0.6 to be in the non-functional group. The

functional group is defined as those subjects whose comprehensive motor perfor-

mance is close to that of healthy subjects, and the non-functional group is defined

as whose motor performance is relatively disabled. All patients were categorized as

non-functional patients prior to the surgical operation. After the operation, seven
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Table 3.2: A summary of the relationship between the reactive response velocity

and the patient reported postoperative ODI.

Functional Non-Functional

Patient ID P1 P2 P3 P4 P5 P6 P7 P8 P9

ODI 0.81 0.84 0.75 0.52 0.84 0.84 0.89 0.36 0.31

P.I of vr 0.31 0.26 0.39 0.49 0.54 0.17 0.78 -0.27 -0.33

out of the nine patients showed improvement in their motor functions and were

categorized as functional patients according to their ODI. Furthermore, qualita-

tive interviews also supported that the surgical operation was successful for those

seven functional patients and thus improved their motor functions.

The changes in values of the seven parameter computed by the proposed an-

alytic framework before and after the operation have been compared against the

postoperative patient’s motor condition (i.e. ODI). Out of the seven parame-

ters, vr, which represents the muscle response velocity to recover from the spastic

movement, showed the strongest correlation to the postoperative ODI values (p-

value < 0.029) as summarized in Table 3.2. Intuitively, this result shows that

the reactive velocity against the spastic movement has been increased for the

patients whose surgical operation has successfully improved their overall muscle

performance, and the velocity has been decreased for the patients whose surgical

operation was not successful. This is strong evidence that the proposed system

(i.e. the handgrip device and the analytic framework) can successfully quantify

the functional improvement or degradation as a result of medical treatment.

3.7 Future Work and Conclusions

This chapter introduces a highly portable system that accurately quantifies the

level of overexcited hand movement during voluntary hand contraction. The sys-
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tem utilizes a lightweight sensing platform and a signal processing framework

composed of a series of four sub-processing units. A clinical cohort study has

been conducted to validate the system on nine patients with degenerative cervical

spinal cord disorders who have hand movement deficits, and the effectiveness of

the system has been validated through an in-depth analysis. The results show

that the proposed system can be useful for quantifying the level of activation hy-

pertonia and measuring the functional progress at a low cost. Further, frequent

and continuously tracking of motor performance over time may be used in the

clinic or home settings to assess the need for clinical intervention or to predict the

surgical success.

There exist many potential research directions to be pursued in the future. For

example, analyzing voluntary reflexion in addition to contraction may provide

more dimensions in motor characteristics of patients. Furthermore, utilizing a

waveform that requires faster contraction or reflexion velocity, such as a step

function, may be useful to investigate the response of patients against the excited

movement.
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CHAPTER 4

A Prediction Model for Functional Outcomes in

Degenerative Spinal Cord Disorders Patients

using Gaussian Process Regression

4.1 Objectives

There are approximately 400,000 patients suffering from spinal cord disorders in

the United States, with nearly 15,000 new patients each year [AFM09,SF01]. The

chronic or traumatic degeneration in the spine results in reduction of the spinal

canal diameter and compresses the spinal cord, which is the central pathway

for electrical transmission between the central nervous system and the periph-

eral nervous system. The reduction of the spinal diameter impairs the trans-

mission of electrical signals, and thus results in loss of sensory and/or motor

function [AFM09]. The physiological symptoms of SCI that are associated with

hand movements include the loss of hand dexterity, numbness, stiffness, weak-

ness, fatigue, and termor. More specifically, characteristic symptoms of SCI at

cervical regions include hyperreflexia that shows exaggerated reflexes of the mus-

cles such as twitching [You00]. As a consequence, patients with SCI often have

problems coordinating fine movements using hand muscles, which restrict various

daily activities such as eating, bathing, or lifting small objects [LLM05].

There exist various methods that quantify physical conditions and/or the level

of motor deficits of SCI patients such as radiological imaging (e.g., X-ray, MRI,
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and CT) [TB10], clinicians observations (e.g., finger-to-nose or heel-to-shin exami-

nations) [LGD98,Ma03], and patient-reported functional outcomes. Among these

techniques, patients’ self-ratings of perceived level of motor function and quality

of life, such as the Oswestry Disability Index (ODI) [Kop00] and Short Form 36

(SF-36) [Bom00], have been widely used as primary measures for clinical effec-

tiveness [Fin10,TS96,PA00] since the fundamental objective of medical treatment

is to improve the well-being of patients [AKE98].

Predicting the patient-reported functional level after medical treatments (e.g.,

surgical operations, rehabilitation, or medication) has always been of great inter-

est [PWA98, Dij99, LPH11, THC08]. Accurate post-treatment prediction allows

(i) defining realistic and achievable clinical goals to patients and their loved ones,

(ii) stratifying patients for appropriate rehabilitation processes, (iii) planning for

proper discharge schedules, (iv) anticipating and preparing for home and com-

munity adjustment, and (v) optimizing medical costs by supporting appropriate

medical services [KWK96, VKW11]. Regression based on various demographic

and clinical variables has been the most commonly used prediction platform since

patient-reported outcomes are often real values. Most existing works employ re-

gression models that assume a predefined relationship (i.e., often linear) between

the predictors and the outcome. Although these methods can be implemented eas-

ily and provide clear interpretability, they have two major shortcomings. First,

the assumption of a predefined relationship (e.g., linear, log-linear, polynomial,

or exponential) may not necessarily be true because one form of measure may

be more sensitive at a certain range of physical conditions than others. Second,

these types of regression methods focus on fitting the data points to minimize

the prediction error, and as a result, they produce a single best value rather than

providing a probabilistic prediction (i.e., predictive distribution); predictive distri-

bution is especially important since it provides a comprehensive summary about

the prediction. For instance, the variability of the prediction distribution can be
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used as a reasonable measure of the confidence of a prediction [HSL13].

This chapter introduces a prediction method for post-surgical functional out-

comes using Gaussian Process Regression (GPR), which specifically addresses the

aforementioned shortcomings of the existing prediction methods. The proposed

prediction method is performed in assistance with a simple target tracking ex-

amination using a lightweight and inexpensive handgrip device, which contribute

significantly to prediction performance. Target tracking based on grip strength is

known to effectively quantify the motor condition of patients with hand movement

deficits [PBC10,NPL11,LGM13a]. A clinical cohort trial has been conducted in

collaboration with the UCLA Department of Neurosurgery and the Department

of Orthopedic Surgery in order to validate the proposed prediction method. Note

that the proposed method is not only limited to the SCI population but can also

be applied to other ailments carrying movement deficits such as Parkinson’s dis-

ease or stroke, as this chapter provides the design and parametrization details of

applying GPR for motor function prediction.

4.2 Related Works

Predicting perceived motor function or quality of life in SCI patients has been

of great interest [LPH11,THC08,PWA98,Dij99]. The work in [LPH11] finds the

predictors for distinguishing various life satisfaction trajectories since the onset

of SCI rehabilitation. Logistic regression has been used to find the predictors for

low and high life satisfaction trajectories. Authors in [PWA98] used multivariate

linear regression to find correlation to the self-reported motor function: Sickness

Impact Profile (SIP68). This study reports that the severity of the injury is the

best predictor. Similar studies have been performed in [THC08] and [Dij99], where

the authors have used hierarchical multiple linear regression and step-wise linear

regression as the prediction models, respectively. Both studies compared the life
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satisfaction to various demographic and clinical parameters including gender, age,

and number of rehospitalizations.

Prediction of perceived health status is also an active research topic in other

ailments carrying motor deficits. For example, [VKW11] reviewed 48 articles on

prediction of functional outcomes in patients with stroke. All studies reviewed

by [VKW11] employed either linear or logistic regression for prediction. Simi-

larly, [SMM11] reviewed 29 articles that predict health-related quality of life in

Parkinson’s disease. This paper reports that multivariate regression was the most

frequently used prediction platform followed by step-wise linear regression and

hierarchical multivariate linear regression. [BWB05] utilizes linear and logistic re-

gressions in order to predict motor function related quality of life in patients with

multiple sclerosis.

Although the aforementioned works examine various variables for predicting

self-reported functional outcomes, their prediction models have two major short-

comings; (i) they assume predefined relationships between predictors and the tar-

get variables (i.e., often a linear relationship) and (ii) they return a single value

that best fits the predefined models instead of providing a probability distribu-

tion of the prediction. As a consequence, this chapter focuses on introducing

a prediction model that overcomes these shortcomings by a novel use of GPR.

GPR has recently received much attention for predictions in various fields includ-

ing biomedicine [SFM08], robotics [XCO11], and communications [JXC13]. GPR

also has been used to predict speech behavioral outcomes in stroke patients based

on parameters obtained from MRI image processing and demographics [HSL13].

However, this method considers GPR as a black box without providing signifi-

cant interpretation about the value of hyperparameters and associated prediction

results. On the other hand, this work provides estimation methods for some of

the hyperparameters by introducing a number of assumptions that allow for more

systematic uses of GPR and minimizes the chances of overfitting. Furthermore,
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this work provides an in-depth interpretation about the prediction results by in-

vestigating the covariance matrix.

4.3 Materials

4.3.1 Cohort Clinical Trial

This chapter validates the prediction methods, which will be discussed in detail

in Section 4.4, through a dataset collected from a 24 month-long cohort trial.

A total of 34 cervical spinal cord injury patients with hand movement deficits

participated in the study. 7 of these patients decided to drop out of the study, and

9 patients were new patients whose three months post-operative data has not yet

been collected. Data collected from 3 patients were corrupted and removed from

the study due to either mistakes during the data collection process or malfunction

of the system itself. As a consequence, this study is validated through a dataset

collected from 15 patients (mean age of 62.3 and a std. dev. of 13.1). All patients

have received a surgical decompression operation that alleviates the nerve pressure

on the spine. The examination procedure was approved by the UCLA institutional

review board, and all patients provided consent to participate in the study.

4.3.2 Measure of Self-Reported Motor Function

There exist various forms of self-reported functional outcomes. The Oswestry

Disability Index (ODI) has been used as one of the primary condition-specific as-

sessment tools for general SCI patients [Kop00] as well as patients with upper limb

deficits [FP00]. The ODI is a survey consisting of ten questionnaires regarding

the level of pain in the affected area and the degree of disabilities in everyday ac-

tivities such as sleeping, self-care, sex life, social life, and traveling [FP00]. Each

question in the questionnaire has five or six answer choices, and patients must
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Figure 4.1: (a) The handgrip device and (b) the two target functions used in this

study.

select the one that best describes the effect of pain in performing these activities.

The answer is scaled to [0, 1] based on the number of available choices, where zero

indicates completely disabled conditions in performing the specified activity, and

one indicates completely healthy condition. The overall ODI score is computed

as the mean value over the ten questions.

4.3.3 Demographic and Clinical Variables

The objective of this work is to introduce a prediction method for post-surgical

functional outcomes based on a patient’s pre-surgical information. Various clinical

and demographic variables are used to predict the changes in motor function after

the surgery. Variables considered in this work include age, narrowest diameter of

the spinal canal before surgery, and months after injury. The narrowest diameter

of the spinal canal is measured using conventional X-ray imaging; the narrowest

diameter at the level of greatest herniation in the mid-sagittal cut is measured in

centimeters. The number of months after injury is reported by patients.

53



4.3.4 Measure of Subjective Fine-Motor Function

As previously stated, the prediction is performed in assistance with a specially

designed handgrip device and target tracking tests in order to better describe

the functional conditions of patients prior to surgery. The target tracking ex-

amination based on grip force has been widely used to quantify the level of fine-

motor function in various types of ailments including Parkinson’s disease [PBC10],

stroke [NPL11], and chronic inflammatory demyelinating polyneuropathy (CIDP)

[LGM13a].

The handgrip device, which also has been used in [LGM13b], is illustrated in

Fig. 4.1 (a). All tracking tests are normalized to the patient’s maximum voluntary

contraction (i.e., the maximum grip strength that a patient can voluntarily exert)

in order to accommodate patients with different grip strengths. To do so, a set of

three springs is chosen such that the combined tension force is greater than the

patient’s MVC with minimal difference. Then, the software measures the actual

MVC and normalizes the maximum amplitude of the target to the MVC.

The test is performed on two different target functions as shown in Fig. 4.1

(b): sinusoid and step functions. The sinusoid function is known to examine

motor-learning capability for fine muscle control, and the step function is known

to investigate a patient’s ability to predict and execute relatively rapid hand move-

ment [Jon00]. The same examination procedure is applied to both functions. As

the test begins, the target within the screen moves towards the left at a constant

speed. The blue circle is always located in the middle of the horizontal axis, but

its vertical position varies according to the applied grip strength. The length of

the test is 45 seconds. The objective of the test is to minimize the error between

the target and the patient’s response. Mean Absolute Error (MAE) is the most

frequently used motor measure [Jon00], which is computed as the mean value of

the absolute differences between the target and the patient’s response over the
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period of the test. In order to follow the general system performance theory that

all dimensions of human performance are in a form for which a higher numeri-

cal value represents superior performance [Kon95], this work uses Mean Absolute

Accuracy (MAA), which is computed as (1 − MAE), as the primary metric for

quantifying motor level. Patients were asked to repeat the tracking tests three

times, and the average MAA of the three tests was used as the final measure (for

both sinusoid and step functions). Note that the reliability of MAA for sinusoid

and step functions has been validated on a dataset collected from 15 SCI patients

and 40 age-match control subjects (mean age of 57.3 and a std. dev. of 9.71).

The Test-Retest score has been computed by incorporating the last two scores of

the three trials when a subject performed the test for the very first time (e.g.,

pre-surgical trial for patients). The R2 values for the sinusoid and step functions

are computed respectively as 0.922 and 0.936, which are highly reliable scores.

Furthermore, the internal consistency has been computed using Cronbach’s al-

pha based on the average sinusoid and step function scores, and the value was

computed as 0.894, which also supports that these tracking scores are internally

consistent.

4.3.5 Longitudinal Study

Patients were asked to visit the clinic at least once prior to the operation. Then,

patients were scheduled to have a follow-up visit at least three months after the

surgery, since a three month period is a clinically meaningful time for recovery

[Fin10]. Both self-reported functional outcomes and the target tracking results

were collected at each clinical visit.
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Table 4.1: Summary of the important notations used in this chapter.

Symbol Description

n Number of data points (patients)

d Size of feature dimension

X n× d training design matrix

y n× 1 training observation vector

ρ, ρ′ ODI score at pre-, post-surgery

α, α′ Sinusoid MAA at pre-, post-surgery

β, β′ Step MAA at pre-, post-surgery

g Age

r Narrowest diameter of spinal canal

h Months after injury

4.4 Prediction Method

This section discusses the prediction method in detail, which estimates the post-

surgical conditions of patients given their pre-surgical information. The important

notations used in this chapter are summarized in Table 4.1.

4.4.1 Background

Prediction problems often involve a finite set of independent variables X (i.e.,

pre-surgical data of patients) and the associated noisy observation of a dependent

variable y (i.e., post-surgical data of patients). X is an n × d matrix where n

represents the number of data points (i.e. the number of patients in this context)

and d represents the size of variable dimension. X is also often called the design

matrix, and can be written as X = {xi|i = 1, ..., n} where xi is a vector of

dimension d. y is the target (or observation) vector of size n. The relationship
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between the input vector and the output variable can be written as

yi = f (xi) + ε, (4.1)

where fi = f(xi) is the latent (hidden) variable that represents the true physio-

logical condition of the patient i, and ε represents the noise added to the observed

variables. Then, the prediction problem can be stated as the following: given a

training dataset D = {X,y}, find the best estimate of the dependent variable y∗

of a new testing set X∗.

Since the dependent variables are real values, the prediction problem can be

formalized in a regression setting. The simplest solution to this problem may

include the linear regression model. Despite of its simple implementation and

interpretability, linear regression assumes a linear relationship between the in-

dependent variables (e.g., pre-surgical MAA under sinus track) and the target

variable (e.g., post-surgical ODI), which may not necessarily be true since one

form of the metric may be more sensitive at a certain range of physical conditions

than the other. For instance, the sinusoid MAA may provide finer granularity in

quantifying physical condition for the patients with relatively healthier conditions

compared to the patients with severe conditions. This problem is not only limited

to linear regression but also to all other types of regression models that assume

a particular relationship between the dependent and independent variables: e.g.,

polynomial regression model.

On the other hand, GPR takes a less parametric approach. GPR constructs a

relationship between X and y based on the geometric positions of xi, ∀i within

the feature space. The dependent variable y is considered as a collection of sam-

ples from an n-variate Gaussian distribution, and it allows GPR to provide not

only the expected value of f ∗ = f(X∗), but also the confidence range of f ∗ by

incorporating the known variances (error ranges) of the variables (e.g., ODI and

MAAs).

57



4.4.2 Gaussian Process Regression

The formal definition of a Gaussian Process is a collection of a finite number of

random variables which has a joint Gaussian distribution [RW06], and it can be

completely defined by its mean function µi = E[f(xi)] and covariance function

(also known as kernel) k(xi,xj) where 1 ≤ i, j ≤ n: f(xi) ∼ GP (µi, k(xi,xj)). In

this work, the squared exponential (SE) covariance function is employed to define

the relationship between the observations:

cov
(
f(xi), f(xj)

)
= k(xi,xj) (4.2)

= σ2
f exp

(
−1

2
(xi − xj)

TM(xi − xj)
)
+ σ2

nδ(xi,xj),

where M = diag(ℓ)−2 and ℓ = {ℓk|k = 1, ..., d}. ℓk represent characteristic

length-scale for each input dimension, and as a consequence M forms a d × d

matrix with its diagonal consisting of ℓk and zero elsewhere. These parameters

define the relationship between each of the independent variables and the target

variable; it allows different relationships for different independent variables. σ2
f

represents the maximum allowable covariance between the input variables in the

d-dimensional feature space. σ2
n represents the variance in the observed noise ε

in (4.1) assuming that ε is an independently and identically distributed Gaussian

distribution: ε ∼ N(0, σ2
n). Last, δ(xi,xj) is a Kornecker delta whose value is one

when xi = xj, and zero otherwise.

4.4.3 Post-surgical ODI

This section, without loss of generality, considers predicting the post-surgical ODI

based on the patient’s pre-surgical data. Note that the proposed model can also

be applied to any other movement disorders with its own measure of motor ca-

pacity. The equation (4.2) indicates that the variance of the dependent vector is

defined based on the geometric positions of the input vectors within the feature

space, which are eventually used to predict the expected value and the variance
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of the target variable y∗ (i.e., (4.3)). The underlying hypothesis is that clinical

and demographic information, in combination with the metrics obtained from the

handgrip device prior to the surgery, would construct an effective feature space

for the prediction.

As discussed in Section 4.3, a total of six features are considered: (i) pre-

surgical ODI (denoted as ρi), (ii) pre-surgical MAA under the sinusoid track (de-

noted as αi), (iii) pre-surgical MAA under the step track (denoted as βi), (iv) the

patient’s age (denoted as gi), (v) the narrowest diameter of the spinal canal prior

to the surgical treatment (denoted as ri), and (vi) months after injury (denoted

as hi). However, a subset of three features are selected to construct the feature

space instead of using all six features in order to avoid overfitting to the relatively

small size of the dataset. Advanced feature selection algorithms such as those

proposed in [LGM13a,PRM11,PMA13] could be employed in order to select the

best performing feature set. However, since the scope of this work is to introduce

a new prediction platform based on GPR, a rather simple feature selection tech-

nique based on an exhaustive search is used. That is, all possible combinations of

feature set of size three (i.e.,
(
6
3

)
) are evaluated in terms of mean absolute differ-

ence (MAD) between the prediction and the ground truth. Then, the feature set

that produces the best prediction result is reported. The same feature selection

procedure has been taken for the benchmarking models (e.g., multivariate linear

model and support vector regression) such that their best prediction results are

compared against the results of the proposed method.

The input and the target variables can be mathematically expressed as yi = ρ′i

and xi ⊂3 {ρi, αi, βi, gi, ri, hi} where i represents the patient index and ⊂3 is a

symbol for a subset of size three. Then, given the training data set D = {X,y}

and the testing input vector X∗, the Gaussian process can be written in matrix
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form as  y

y∗

 ∼ N

 µ

µ∗

K(X,X) + σ2
nI K(X,X∗)

K(X∗,X) K(X∗,X∗)


,

whereK(X,X∗) is a n×n∗ matrix which represents covariance between each data

point in X and each point in X∗. K(X,X), K(X∗,X), and K(X∗,X∗) are also

defined in a similar manner. Then the conditional distribution of the prediction

variable y∗ is also a Gaussian: y∗ = y∗|X,y,X∗ ∼ N
(
E(y∗), cov(y∗)

)
. Note

that E(y∗) represents the expected value of the prediction variable and cov(y∗)

can be used to compute the confidence range. These two values can be computed

based on the Multivariate Gaussian Theorem as

E(y∗) = E(y∗|X,y,X∗)

= µ∗ +K(X∗,X)
[
K(X,X) + σ2

nI
]−1

(y − u)

cov(y∗) = K(X∗,X∗) (4.3)

−K(X∗,X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗).

4.4.4 Hyperparameters

Intuitive meanings of hyperparameters (σ2
f , σ

2
n, and ℓ) in (4.2) are as follows. As

discussed earlier, σ2
f represents the maximum covariance between the two input

variables. The maximum covariance is achieved when the two inputs are equal

(i.e., k(xi,xi)), and thus σ2
f is closely related to the covariance of input vector

xi in each of the three feature dimensions. It is especially difficult to come up

with the theoretical value for σ2
f since the variance in each dimension of ρ, α,

β, g, r, and h is different. Furthermore, the inter-relationships between these

variables are not verified. ℓ represents a vector of characteristic length scales that

determines sensitivity to changes in covariance according to the distances of two

input vectors in each dimension. Both σ2
f and ℓ are analytically intractable, and

thus these parameters are selected by maximizing a posteriori estimates based

on the training data: p(σ2
f , ℓ|X,y), which is equivalent (based on the Bayes’
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Theorem) to maximizing log marginal likelihood:

log p(y|X, σ2
f , ℓ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π. (4.4)

On the other hand, σ2
n can be estimated based on previous studies performed

on ODI. Assigning a near-theoretical value to σ2
n (instead of computing the value

based on maximum likelihood) is especially important since it reduces the chances

of overfitting by minimizing the number of hyperparameters that need to be tuned

to the training data. As shown in (4.1), σ2
n models the observation error added

to the hidden variable f(xi). In this context, this hidden variable represents the

true physiological condition of the patient i. However, it is impossible to compute

this variance since the true physical condition of a patient cannot be evaluated.

In order to estimate the σ2
n, this work assumes that this variance is constant

throughout all ranges of physical conditions, i.e., σ2
n is not a function of x. Then,

one can estimate σ2
n by investigating the standard deviation of the ODI score

of the normal population under an additional assumption that the true physical

condition of the normal population is constant or minimally varying. The range

of σ2
n is reported to be 0.022 ≤ σ2

n ≤ 0.12 according to [FP00]. In this work, the

worst scenario is considered by assigning σ2
n = 0.12. The empirical validation on

this theoretical value is further investigated in Section 4.5.4.

4.4.5 Post-surgical MAA

Similar procedures have been taken for predicting post-surgical MAA values. In

this work, rather than predicting MAAs for sinusoid and step tracks separately, a

more comprehensive MAA is considered by averaging the sinusoid MAA and step

MAA, i.e., y = 1
2
(α′ + β′).

The values of σ2
f and ℓ are computed by maximum marginal likelihood. Sim-

ilarly to the ODI prediction, the value of σ2
n is estimated based on the control

subject’s performance under the same assumptions that (i) the σ2
n is constant
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throughout all ranges of physical conditions and (ii) the true physical conditions

of control subjects are constant or minimally varying. The standard deviation of

1
2
(α′+β′) of control subjects is computed to be 0.0165, and thus σ2

n = 0.0165. The

empirical validation on this theoretical value is also investigated in Section 4.5.4.

4.5 Experimental Results

4.5.1 Prediction of Post-surgical ODI

As discussed previously, the hyperparameters σ2
f and ℓ are selected such that

they maximize the marginal likelihood, i.e. (4.4). The observation noise σ2
n is

set to be 0.12. With the computed hyperparameters, the expected value and the

confidence range can be predicted based on (4.3). The prediction is performed by

a leave-one-subject-out cross validation (LOSOCV). The best prediction result of

the proposed method is achieved when the following features are used: {α, ρ, r}.

The prediction result is illustrated in Fig. 4.2 where the x-axis represents the

actual ODI that the patient evaluated after the surgery, and the y-axis represents

the predicted ODI of the proposed method. More specifically, Fig. 4.2 (a) shows

the scatter of the mean values of prediction, and Fig. 4.2 (b) shows the mean

values with 95% confidence range. The R2 of this prediction was computed as

0.435, and the MAD between the prediction and the ground truth is 0.096.

The covariance matrix K(X,X) is analyzed in order to find a more mean-

ingful interpretation for this result. K(X,X) has been constructed by finding

the hyperparameters σ2
f and ℓ based on the entire dataset (although the results

in Fig. 4.2 are produced from the LOSOCV) in order to find possible correlation

between all patients in the selected feature dimensions. The values of marginal

likelihood hyperparameters are computed as σ2
f = 0.77 and ℓ = {1.59, 0.22, 6.55}

in the order of {α, ρ, r}. Fig. 4.3 (a) illustrates the normalized covariance matrix;

the covariance matrices are normalized to a 0 to 100 scale in order to compare
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Figure 4.2: Prediction of post-surgical ODI based on pre-surgical information.

K(X,X) of ODI and MAA. This matrix is a symmetric matrix whose value is at

its maximum when the two inputs are identical as identified in (4.2).

Note that there exist four predictions where the ground truth does not fall

within the 95% confidence range from the expected values in Fig. 4.2: #2, #3,

#5, and #15. These four points are the points that produce the largest four

prediction errors. Especially, #5 and #15 have noticeably large prediction errors

(i.e., the highest two errors). Interestingly, the two patients whose maximum

correlation to other patients are the lowest are also #5 and #15 (computed from

K(X,X) in Fig. 4.2 (a)). This implies that more patient data with similar pre-

surgical characteristics within the selected feature dimension is needed to improve

the prediction accuracy for these patients. On the other hand, #2 and #3 have a

sufficient number of neighboring data points, but produced relatively high errors.

This implies that they requires additional feature dimensions.

The prediction performances of the proposed method are also compared against

the two benchmarking prediction models: multivariate linear regression (MLR)

and support vector regression (SVR). As discussed earlier, MLR is the most com-

monly used model that assumes simple linear relationships between the input
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Figure 4.3: The covariance matrix in the selected feature dimensions for (a) ODI

and (b) MAA.

Table 4.2: Comparison of the proposed method against the simple multivariate

linear regression.

Prediction ODI MAA

Method Features R2 MAD Features R2 MAD

GPR {α, ρ, r} 0.435 0.096 {α, ρ, g} 0.761 0.011

SVR {α, β, ρ} 0.301 0.097 {α, β, ρ} 0.476 0.023

MLR {ρ, g, h} 0.286 0.110 {α, r, h} 0.220 0.026

features to the dependent variable. SVR is a less parametric model similar to

GPR. However, this model also reports the prediction results only with the ex-

pected value without much information regarding its confidence range. The results

are summarized in Table 4.2. Similarly to the result of the proposed method, the

prediction results of the best performing feature sets are reported for both MLR

and SVR. Table 4.2 shows that the proposed method produces superior prediction

results compare to MLR. Furthermore, the proposed method shows similar (i.e.,

prediction of ODI) or superior (i.e., prediction of MAA) performance compared

to SVR.
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4.5.2 Prediction of Post-surgical MAA

A similar procedure has been taken for predicting post-surgical MAA. As discussed

earlier, σ2
n is set to 0.0165 and the other two hyperparameters are found based

on the marginal likelihood maximization. The best prediction performance is

obtained when the following features are employed: {α, ρ, g}. The prediction

result is illustrated in Fig. 4.4. The R2 of this prediction is computed to be 0.761,

and the MAD between the prediction and the ground truth is 0.011. There was

only one data point where the ground truth value did not fall within the 95%

confidence range: #15. Again, the covariance matrix K(X,X) in Fig. 4.3 (b) is

consulted for explanation. Similarly to the prediction result of ODI, the patient,

whose maximum value of its correlation to other patients in the selected feature

dimension is minimum, is found to be #15.

The prediction results of post-surgical MAA were much more accurate com-

pared to that of ODI as summarized in Table 4.2. Fig. 4.3 shows that the covari-

ance values were much greater within the selected feature dimension for predicting

MAA compared to ODI. In other words, there exist more patients with similar

pre-surgical characteristics under the maximum marginal likelihood hyperparam-

eters. As a consequence, the prediction results of MAA may be superior to ODI.

This higher prediction accuracy of MAA may be a result of the handgrip device

providing less noise compared to ODI for evaluating the true physical conditions

of patients (i.e., hidden variable).

4.5.3 Contribution of Target Tracking Results to Prediction

In order to validate the contributions of target tracking results in predicting ODI

and MAA, the results of the best performing feature sets, which both include the

target tracking results as shown in Table 4.2, have been compared against the

best performing feature sets that do not contain the target tracking results. This
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Figure 4.4: Prediction of post-surgical MAA based on pre-surgical information.

Table 4.3: Comparison between the best feature set containing the target tracking

scores (FS #1) and the feature set constructed solely based on demographical and

clinical variables (FS #2)

Prediction ODI MAA

Features R2 MAD Features R2 MAD

FS #1 {α, ρ, r} 0.435 0.096 {α, ρ, g} 0.761 0.011

FS #2 {ρ, g, r} 0.115 0.274 {ρ, g, h} 0 0.060

allows the comparison between a feature set that contains the target tracking

results (abbreviated as FS #1) and a feature set constructed solely based on

demographic and clinical variables (abbreviated as FS #2). This comparison is

summarized in Table 4.3. This result shows that incorporating the handgrip test

for predicting post-surgical functional outcomes improves the MAD by 17.8% and

4.90% for ODI and MAA, respectively. Furthermore, the R2 has been significantly

improved from 0.115 to 0.435 for ODI and 0 to 0.761 for MAA.
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4.5.4 Empirical Validation of σ2
n

The values of σ2
n for estimating post-surgical ODI and MAA are set to 0.12 and

0.0165, respectively. These values are validated by comparing to the empirical σ2
n

that maximizes the marginal likelihood over a wide range of values, such as 10−5

to 103. The empirical σ2
n for ODI and MAA were computed to be 0.1186 and

0.027, respectively. This is strong evidence that the theoretical estimations of σ2
n

are valid.

4.6 Discussion and Future Work

The major objective of this study was to introduce a novel use of GPR for pre-

dicting post-operative functional outcomes based on information available prior

to the operation. The data collection was a very expensive and time-consuming

process as discussed in Section 4.3.1. To compensate the limitation posed by

the size of the data set, the prediction was evaluated in a LOSOCV, and the

achieved results were promising. This pilot study opens a new opportunity for

a study with a larger patient population where more patient-specific techniques

can be applied. For example, a clustering algorithm prior to the proposed pre-

diction method may enhance the performance as different prediction models can

be constructed among patients with similar characteristics. Furthermore, with

a larger number of patients, more advanced feature selection algorithms such as

those in [LGM13a,PRM11,PMA13] can be applied.

The proposed prediction method is validated through a dataset collected from

patients with cervical SCI. In order to show that the method can be applied to

a broader classes of SCI patients, a study involving lumbar (i.e., lower back) SCI

patients with sensor-equipped smart shoes is being conducted.
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4.7 Conclusion

This chapter introduces a prediction method for post-surgical functional outcomes

by a novel use of Gaussian Process Regression. Two functional outcomes are con-

sidered in this chapter: Oswestry Disability Index and the target tracking score.

The reported results show that the proposed method can predict post-surgical

outcomes with 9.6% and 1.1% of error rates for ODI and target tracking, re-

spectively. The proposed method has been compared against two widely-used

benchmarking prediction models (i.e., multivariate linear regression and support

vector regression), and showed superior prediction performance. This study en-

ables new opportunities for accurate prediction of post-surgical conditions of in-

dividuals with handgrip deficits using an inexpensive and portable device. This

further enables clinicians to perform more ubiquitous and convenient screening

for predicting a patient’s functional level before medical treatment, which may be

especially beneficial to the patients, their care-givers, and physical therapists.
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CHAPTER 5

Application of the Target Tracking Tests on

Patients with Other Neuromotor Ailments

5.1 Objectives

Ailments such as stroke [AZD04], Parkinson’s Disease (PD) [Mor00b], spinal cord

injuries [Con73], and many other neuro-degenerative disorders are commonly as-

sociated with movement deficits, which affect the function of motor neurons and

restrict the movements of the body such as those of the upper limbs, gait, and

speech performance [Cri81].

Currently, the available assessment methods for the progress of patients with

associated ailments are based on human observations of motor performances (e.g.,

finger-to-nose test) [JJE06,FJO75]. Clinical professionals use these measurements

for preliminary scanning in order to diagnose ailments in early stage. Early de-

tection of these ailments can dramatically reduce the risk of the severity of motor

deficits [HT08].

Furthermore, medical treatments available for movement disorders are typi-

cally a combination of medication, surgical operation, and rehabilitation. These

treatments are often evaluated by measuring the motor performance of the pa-

tients before and after the specific service (e.g., surgery), again, based on human

observations. However, these methods suffer from the subjective nature of the

measurements, which are often based on limited ordinal scales [FJO75]. This

subjectivity creates a need for quantitative assessment methods, such that the
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analysis of patients’ motor performances can be made more accurate and objec-

tive [GDB02].

Researchers have studied various methods to objectively quantify the level of

upper limb movement. Among those methods, handgrip performance has been

known as a simple, accurate, and economical bedside measurement of muscle

function and the progression of the movement disorders [DPa06,RPa06,LWN12,

JRK09, MC97, KGG05, GLa13, LGa13a, LGa13b, LGM13b]. The grip control is

of extreme importance in performing fundamental daily activities such as eating,

brushing teeth, and getting dressed. However, existing works often employ equip-

ment that are either very large in size or extremely expensive. Moreover, they

often lack in-depth analysis on patients’ motor performance with respect to their

ailment conditions.

Given the current standard of healthcare for movement disorder patients, there

is a need for innovative technologies that (i) provide wearable and portable devices

that can be used on a daily basis in many settings; (ii) can be used for individuals’

stratification so that such systems are applied on healthy individuals to potentially

provide early alarming of any movement disorders; (iii) quantify the level of sever-

ity of the specific disorder for a patient; (iv) provide insight on disease symptoms

by specifying each abnormality/symptom in terms of signal-specific features.

This chapter introduces a lightweight and inexpensive handgrip device that

collects multi-dimensional sensory data associated with motor characteristics of

individuals with upper limb deficits. Furthermore, a data analytic framework with

associated algorithms for individuals’ ailment classification, disease severity quan-

tification, and specification of physical symptoms is discussed. The effectiveness

of the proposed movement performance assessment framework is demonstrated

through a dataset gathered in a clinical trial performed at St. Vincent Medical

Center in Los Angeles, USA.
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5.2 Related Works

Many studies have examined handgrip performance in order to reflect the motor

capacity of patients with movement disorders. The mechanisms used to investi-

gate the handgrip performances can be divided into three broad categories: (i)

assessment based on precision grip, (ii) assessment based on Maximum Voluntary

Contraction (MVC)1, and (iii) assessment based on force tracking tasks.

Assessment methods based on precision grip focus on simulating tasks involv-

ing precise muscle control such as lifting, holding, or transporting a small object

(e.g., chopsticks or a pencil) [Mor00a]. In [DPa06], authors utilize a force sensor

embedded apparatus in order to investigate digit forces when an active and dy-

namic hand grasping movement is simulated. In [HHa03], a device embedded with

a force sensor and an accelerometer is used to assess finger strength. In [RPa06],

an instrumented glove was used to analyze finger movement of patients with sub-

cortical stroke.

MVC-based assessment methods utilize various systems and devices to measure

MVC. In [STa89], a simple dynamometer is used in order to measure the MVC

as a measure of recovery and a prognostic indicator for patients with stroke. The

system in [MSa00] uses a vigorimeter, which measures the air pressure using a

rubber bulb. Then, a few features of MVC are analyzed to reflect the disease

progress over time. In [JRK09], authors investigate the handgrip strength and

endurance of healthy subjects and patients using a dynamometer, and conclude

that handgrip strength and mobility for patients are strongly correlated. The

system proposed in [MC97] uses instrumented objects that measure forces applied

during tasks such as manipulating a book, or a fork.

Assessments based on force tracking tasks provide visual feedback of patients’

hand performances, such that patients can control their grip force to minimize

1MVC defines the amount of force that a patient produces when she voluntarily grasps the
handgrip device with maximum effort.
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the difference between the target and the actual response [KZB04]. The system

proposed in this chapter improves upon methods that fall within this category.

The system in [KZB04] and [KGG05] utilizes various types of devices, such as a

nippers pinch, spherical grip, lateral grip, and cylindrical grip, in order to capture

the grip force. The system uses a sinusoidal and ramp waveform for the target.

Two features are extracted in order to analyze the patients’ motor performance:

root mean square error and correlation between the target waveform and the user

response. In [JJE06], authors propose a handgrip device that measures forces

generated by individual fingers using pressure sensors. In [SN00], authors utilize

a grasping apparatus to capture grip forces, and provide a target waveform of a

continuous and constant force level on a computer screen.

Most of the aforementioned works (i.e., [Mor00a,DPa06,WKa05,HHa03,RPa06,

STa89,MSa00, JRK09,MC97,KZB04]) focus on introducing the developed hand-

grip devices using a simple metric to validate the effectiveness of those devices.

Thus, these works often lack in-depth analysis of the data according to their

ailment conditions. Furthermore, some of the devices such as those used in

[DPa06,MSa00, JRK09,KZB04, SN00] are either very large in size or extremely

expensive.

5.3 System Architecture

The proposed system is composed of (i) the sensing hardware that contains a

handgrip device equipped with a force sensor in order to collect the time-varying

muscle controllability of patients, and (ii) the software system that visualizes the

examination and stores the results in the database. An overview of the proposed

system is illustrated in Fig. 5.1.
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Figure 5.1: The graphical overview of the proposed system.

5.3.1 Sensing Hardware

5.3.1.1 Handgrip Device

The handgrip device is motivated from medical devices that are currently used by

clinical professionals (e.g., handgrip device in [WL81]), as shown in Fig. 5.2 (b).

The proposed handgrip device is illustrated in Fig. 5.2 (a). The two cylinders

bridged by the black Derlin plastic (Part-C in Fig. 5.2 (a)) are movable along

the sideline (Part-B in Fig. 5.2 (a)) such that patients can grasp the device. The

movable component of the handgrip device is bound to the fork-like side (Part-A

in Fig. 5.2 (a)) of the device by a rubber band. Patients can use rubber bands of

different tension forces in order to customize the maximum squeeze force in the

handgrip device. Additionally, the fork-like side of the handgrip allows patients

to further adjust the tension force by placing the rubber band at different widths.

Finally, a force sensor is attached to Part-D in Fig. 5.2 (a), and it measures the

force generated by the grasping action.
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Figure 5.2: (a) The physiologically designed handgrip device of the proposed

system (left) and (b) the handgrip device currently in use (right)

5.3.1.2 Sensing Platform and Communication System

A commercial FSRTM force sensor (Interlink Electronics, USA) is attached to the

handgrip device in order to measure the grip strength. The FSR sensor is used in

the proposed system because (i) the FSR sensor responds accurately and precisely

to the general range of handgrip force, and (ii) the FSR shows good performance

in terms of robustness [VFa00].

In the proposed system, MSP430 (Texas Instruments, USA) is employed as

the communication device, which is capable of delivering the captured sensory

data in a wired or wireless manner.

5.3.2 Software Framework

The software is composed of the front-end and the back-end software systems. The

front-end software system provides a graphical interface for patients to perform

the tracking examination, which will be discussed in detail in Section 5.4. It also

provides a number of test parameters, which may change the attributes of the

examination such as test duration or difficulty of the test. The back-end software

system is a database system, which stores the information such that an in-depth
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data analysis becomes possible.

5.4 Examination Procedure

The examination is designed to assess a patient’s grip strength as well as a patient’s

ability to precisely control the strength [KZB04, KGG05]. Fig. 5.3 illustrates

an example of a tracking examination using a sinusoidal waveform. When the

examination begins, the target waveform is horizontally shifted to the left at a

constant speed and, as a result, the user observes a flow of the waveform within

the screen. The blue circle in the middle of the screen corresponds to the level

of pressure acquired from the force sensor. The blue circle is always located in

the middle of the x-axis and its position in the y-axis changes according to the

provided pressure. The objective of the examination is to control the grip strength

to minimize the difference between the target waveform and the patient response.

The software stores the target waveform, the patient’s response, and various test

attributes (e.g., duration or difficulty of the test) in the back-end database.

Patients may have different handgrip strengths due to various physical condi-

tions. Therefore, the system first measures the MVC prior to the actual exami-

nation and normalizes the examination based on the MVC value for each patient.

As a result, the labels on the y-axis in Fig. 5.3 represent the percentage of the

acquired grip strength compared to the MVC measured in the calibration process

(i.e. 100% in the y-axis refers to the patient’s MVC).

In summary, the examination considers both the maximum strength and the

preciseness of a patient’s grip control as explained in [Jon00].
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Figure 5.3: Illustration of an examination using a sinusoidal waveform

5.5 Data Analysis

This section provides detailed discussion about (i) metrics that quantify general

motor performance of patients and (ii) a comparative analysis methodology that

can be used to summarize the characteristics of physical symptoms of patients.

5.5.1 Comprehensive Metric to Quantify Motor Performance

In order to quantify comprehensive motor performance based on a tracking exam-

ination, various metrics have been used such as mean absolute difference (MAD)

[Pou74], root mean square error (RMSE) [ON95], mean square error (MSE) [NNO93],

mean absolute variance (MAV) [NM80], and the standard deviation of error

(SDE) [Jon00] between the target waveform and the patient’s response. In this

work, MAD and MAV are employed in order to quantify comprehensive motor

function.

5.5.2 Ailment-Specific Analysis

This section describes the in-depth data analysis method that extracts meaning-

ful information about the characteristics of a group of patients by comparing the

examination results with other subjects. For example, consider a scenario where
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an elderly candidate patient experiences some upper limb movement disorders

and other symptoms related to a specific ailment, e.g., Cerebral Vascular Acci-

dent which is also known as stroke. Then, clinical professionals can perform an

ailment-specific analysis on previously collected signals of patients with CVA, and

reflect the results to the examination outcomes of this elderly patient. The results

will allow the clinical professionals to observe (i) if the proposed system can make

a clear distinction in terms of motor function between the two groups, and more

importantly (ii) which motor characteristics are uniquely observed among patients

with CVA that help such distinction. The reason that we perform the ailment-

specific analysis is because different ailments are associated with different motor

characteristics, and therefore the motor performance of patients sharing the same

ailment must be analyzed based on the specific motor characteristics of that ail-

ment. For instance, patients with CVA often carry cognitive impairments, which

result in delays between the target waveform and the patient generated wave-

form due to delayed motor response. On the other hand, patients with Chronic

Inflammatory Demyelinating Polyneuropathy (CIDP) only carry physical motor

impairments and do not show significant delay in the results. This ailment-specific

analysis allows the clinical professional to examine the candidate patient based on

features that represent motor symptoms of the associated ailment for the purpose

of (i) quantifying the severity of such symptoms, and (ii) possibly tracking the

improvement over time.

In order to address this objective, the ailment-specific analysis employs the

significant-feature identification algorithm [SM03, SS98], which utilizes feature

ranking, feature selection, and classification algorithm. The significant-feature

identification algorithm performs the classification iteratively in order to observe

the most frequently selected feature subsets and their associated classification

accuracy.

The ailment-specific analysis begins with forming the group of signals of in-
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terest and the group of signals to be compared against, which are used as ground

truth labels in order to evaluate the classification performance. Throughout this

chapter, the term group of interest (GOI) is used to generically represent the sig-

nals in which one is particularly interested to analyze. Note that this work also

uses the term positive signals and negative signals to define the signals in the GOI

and the signals in the other group, respectively.

The ailment-specific analysis method employs a hold-out strategy which formu-

lates the learning and the validation dataset in order to perform the classification

iteratively [BZ08]. The entire dataset is first divided into the learning set and

the validation set using a leave-one-out cross validation (LOOCV). The learning

set is used to extract significant features and to construct a classification model,

and the validation set is used to evaluate the performance of the model. Then,

the learning set is tested over the feature search space constructed by the fea-

ture ranking and feature selection algorithms. In order to do so, each element in

the feature search space is evaluated based on another LOOCV within the learn-

ing set ; the learning set is further divided into the training set and the testing

set [BZ08]. The feature extraction, feature ranking, and feature selection algo-

rithms performed on the learning set are graphically illustrated in Fig. 5.4. The

classification model and the signification feature set constructed by the learning

set are finally evaluated using the validation set. Finally, the models and the fea-

ture sets constructed by the outer layer cross validation are further processed by

significant-feature identification method to extract the true significant feature-set.

5.5.2.1 Feature Extraction

Suppose that a set of extracted features from a single examination result is repre-

sented as a horizontal array s = [s1 s2 · · · sT ], where T is the number of features.

Each feature si is computed using a feature extraction function fi (wg[n], wr[n]),

which is either in the time- or frequency-domain.
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Figure 5.4: The graphical overview and data flow of the analysis methodology on

the learning set.

Representing the total number of test instances (i.e. both learning and

validation sets) as M , a (M × T ) feature matrix can be computed:

S =



s1

s2

...

sM


=



s11 s12 · · · s1T

s21 s22 · · · s2T
...

. . .
...

sM1 sM2 · · · sMT


(5.1)

=
[
s1 s2 · · · sT

]
, (5.2)

where sj with j ∈ [1,M ] is a horizontal array of features, and si with i ∈ [1, T ]

is a vertical array composed of values of a feature fi(·) computed from the entire

signals.

5.5.2.2 Feature Ranking and Feature Selection

As explained earlier, the feature ranking and feature selection algorithms are per-

formed on the learning set. The reason that feature ranking and feature selection

techniques are employed as follows. First, given a pre-defined set of features s,

not all of these features play an important role in classifying a certain GOI. This

may lead to a problem during the classification process that a collection of many
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useless features can be accumulated to overwhelm some useful features. Second,

it is more computationally efficient since it filters out features that are less useful.

Lastly, information about the ranks of features according to the level of contri-

butions in the classification process is valuable to us because features with higher

rank can be defined as physical symptoms found only in that GOI.

The proposed system employs the estimated Pearson correlation coefficients

to rank the features according to the level of correlation to the class labels (i.e.,

positive or negative signals). The Pearson correlation coefficient for a feature fi,

can be estimated using

R(i) =

∑M ′

j=1

(
sji − E(si)

)
(yj − E(y))√∑M ′

j=1

(
sji − E(si)

)2 ∑M ′
j=1 (y

j − E(y))2
, (5.3)

where yj with j ∈ [1,M ′] represents the class of the signal j (i.e., +1 for positive

and −1 for negative class signal). M ′ represents the size of the learning set (i.e.,

M ′ = M − 1 since LOOCV is applied). E(·) represents a function computing the

mean value of the input vector. Then, we use R(i)2 as a feature ranking criterion

that estimates goodness of linear fit of an individual feature to the class vector

y [GE03].

Given the rank of all features, the well-known forward selection strategy is

used to construct the search space, which starts with the highest ranked feature

and gradually adds a feature that is the next highest. Then, the size of the

search space is reduced to T − 1. Each feature subset is evaluated using Linear

Discriminant Analysis (LDA), and the feature subset with the highest averaged

classification accuracy is selected.

5.5.2.3 Identifying Significant-Features

When the best performing feature subset is selected, the learning set is projected

onto the selected features and the classification model is trained. Then, the val-
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idation set is classified and evaluated using LDA. The classification accuracy is

computed by averaging the number of correctly classified instances over M vali-

dation sets (created by the outer LOOCV) using LDA. Moreover, the algorithm

produces M feature subsets that are selected by the feature selection technique.

In order to investigate the significant feature subsets, we compute the followings

over the cross validations: (i) the most frequently appearing feature subset, (ii)

the top K features for the accumulated ranking score, and (iii) the associated clas-

sification accuracy. Intuitively, the more frequently selected feature subset carries

more relevant information about the patients that we are interested [SS98].

5.6 Validation

5.6.1 Clinical Trial

We have conducted a clinical trial at St. Vincent Medical Center (Los Angeles,

CA). A total of 16 subjects participated in this clinical trial and provided 78 ex-

amination instances. Among the participating subjects, 12 of the study’s subjects

were patients (mean age of 70.5 years with a standard deviation of 10.5), and they

produced a total of 67 examination results. The remaining 4 subjects were healthy

individuals (mean age of 64.3 years with a standard deviation of 12.1) and the

data collected from these subjects resulted in 11 examination instances. All pa-

tients had motor deficits in their upper limbs and they were examined prior to any

operational treatments. All subjects performed the examination while he/she sat

upright, had the elbow flexed 90 degrees with the arm close to the body, and had

the wrist and forearm resting on a table. Prototype software that was designed

from our laboratory was used to perform the examination. The user interface

provides real-time visual feedback to the subject to perform motor movements

consistent with the desirable waveform. The interface is developed in C# .NET

and it communicates with the back-end server, which is a SQL database.
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Figure 5.5: Randomly selected sample signals of subjects with various conditions.

The three signals in column (a) belong to patients with CVA. The signals in

column (b) belong to patients with CIDP. The signals in column (c) are sample

signals of healthy subjects.
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The 16 subjects that participated in the clinical study were grouped based on

their primary medical problems. For instance, if a patient was actively diagnosed

for CVA, that patient was assigned to the CVA group. This resulted in the

formation of two primary ailment groups: (i) a group of patients with CVA and (ii)

a group of patients with CIDP. These GOIs will be the focus of our experimental

validation for the rest of this article.

These two groups are chosen such that each ailment group can be analyzed with

sufficient data that can be used for both learning and validation. For example, the

number of examination results for the patients with CVA was 17 and the number of

results for patients with CIDP was 24. The rest of the patients were diagnosed with

various ailments with upper limb deficits such as Parkinson’s disease and Intra-

Cerebral Hemorrhage but were eliminated from the analysis due to the relatively

small number of signals (e.g., we had only one patient diagnosed with each of

these ailments).

Fig. 5.5 illustrates sample examination results of the two ailment groups and

the healthy subjects that we consider in this analysis. As illustrated, the exam-

ination results provide clear visual distinction between the health subjects and

patients. CVA patients seem to exhibit delayed movements often having difficul-

ties of coordinating the speed of the moving sinusoidal waveform. It may be a

result of both physical and cognitive problems, which are common symptoms of

CVA. The signals of CIDP have high level of noise compared to those of healthy

subjects, which may be a result of a tremor effect. On the other hand, the signals

of healthy subjects are smooth and well correlated to the target waveform.

5.6.2 Features used in the Analysis

This section presents features that are used in the data analysis. A total of 45

candidate feature functions are defined, where the first 36 feature functions are
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in the time-domain and the following 9 feature functions are in the frequency-

domain.

The first time-domain feature extraction function, denoted as f1, represent

MAD between the target waveform and the waveform generated by the subject.

This function provides the overall level of performance in term of preciseness.

f2 computes the maximum instantaneous change in magnitude of the subject-

generated waveform in order to investigate how well a subject manipulates the

grip strength. f3 computes the minimum time required for the subject-generated

waveform to cross the target waveform from the time that the examination begins

in order to investigate the subject’s recovery time from deviation. The fourth time-

domain function, f4, computes the total number of intersections of two waveforms

in order to investigate a subject’s ability to control the grip strength to stay near

the target waveform. f5 investigates the number of changes in the sign of the slope

of the patient-generated waveform in order to correlate the examination results to

possible tremor effects. f6 and f7 compute the number of times that the subject-

generated waveform crosses horizontal lines at magnitude y = 50% and y = 25%,

respectively. The time-domain functions from f8 to f22 are constructed as the

following. 20 second-long waveforms generated by subjects are quantized into 15

segments of uniform length (i.e., each segment contains the data of 20/15 seconds).

Then, f8 to f22 contain the mean values of the magnitude of these segments. These

quantized segments are used to evaluate the changes in grip strength over time.

Furthermore, the time-domain functions from f23 to f36 compute the difference

in mean magnitude of the two neighboring segments. These features are used to

evaluate how fast the grip strength of a patient changes over time. The frequency-

domain functions used in this analysis are computed as the following. The first

frequency-domain function, f37, computes the average difference in magnitude

between the DFT of the target waveform and the DFT of the subject-generated

waveform over all the possible frequency range. The frequency-domain functions
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Figure 5.6: (a) MAD and (b) MAV for three groups: patients with CVA, patients

with CIDP, and healthy subjects

from f38 to f45 divide the frequency range from 0 Hz to 16 Hz into 8 segments of

uniform length (i.e., 2 Hz), and compute the spectrum energy for each segment

in order to investigate the tremor effect at various frequency ranges.

5.6.3 Comprehensive Quantification of Motor Performance

This section presents the results of quantification of motor performance based on

the metrics discussed in Section 5.5.1. The results of the two groups of major ail-

ments are compared against the results of healthy subjects and they are illustrated

in Fig. 5.6. The comparative results of the two ailment groups to the healthy

group show that there exist significant degradations in motor performance in the

ailment groups. These results show that the proposed system can be used for

a preliminary screening device to quantify grip motor performance and compare

the results against healthy subjects. This further implies that (i) the system may

distinguish patients with upper limb deficits and (ii) the system provides a ref-

erence motor performance of subjects in a healthy physical status such that the

improvement of a patient’s motor capacity can be tracked.

5.6.4 Ailment-Specific Analysis Results

This section presents the data analysis results when the signals of patients with

CVA and CIDP are compared against various groups of subjects: (i) all patients
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without the ailment, (ii) healthy subjects, and (iii) the union of (i) and (ii) (i.e.,

all subjects without the ailment). For example, when the positive-class signals

are defined as the signals of patients with CVA, the negative-class signals are

defined as (i) signals of patients without CVA (i.e., excluding healthy subjects),

(ii) signals of healthy subjects, and (iii) combined signals of patients without

CVA and healthy subjects. In this work, we generically use the term classification

instances for these three different positive and negative class combinations and

label each instance as (i) a non-CVA instance, (ii) a healthy subject instance, and

(iii) a combined instance.

5.6.4.1 CVA Detection

The data analytic results are summarized in Table 5.1. The sixth and the sev-

enth columns represent the number of the selected features and their labels, re-

spectively. The last column represents the top single feature with the highest

accumulated ranking score (i.e., K = 1 in Section 5.5.2.3). The corresponding

classification accuracies for the non-CVA patients instance, healthy subjects in-

stance, and the combined instance are 94.64%, 95.00%, and 92.54%, respectively.

These high classification accuracies show that the physiological signals produced

by the proposed system contain ailment-specific information, which can be fur-

ther interpreted as the motor characteristics of that ailment. For CVA patients,

interestingly, the most frequent features for all three classification instances are

identical (i.e., f36 and f39). Fig. 5.7 illustrates the empirical distributions of the

three features, which show clear separation between the positive (blue) and the

negative (shaded red) classes.

Feature f36 represents the MAD of the last two temporal segments as was

explained in the previous subsection, and the results in Fig. 5.7 show that CVA

patients have relatively higher values compared to the rest of the subjects. Thus, it

may help the physicians to see that the selected patients may dramatically lose the
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Figure 5.7: Empirical distribution of the selected features when the signals of CVA

patients are compared against (a) combined group (f36 and f39), (b) patients with

CVA (f36 and f39), and (c) healthy subjects (f39 and f36).

preciseness of their grip control (or simply the grip strength) as the test proceeds

towards the end. Moreover, feature f39 represents the spectrum energy of the

patient response at the frequency range between 2 to 4 Hz, and Fig. 5.7 shows

that the selected patients have relatively low spectral energy at this frequency

range.

5.6.4.2 CIDP Detection

When the positive signals are defined as the signals of CIDP patients and com-

pared against non-CIDP patients instance, healthy subjects instance, and the com-

bined instance, the classification accuracies are 91.07%, 91.42%, and 85.07%, re-

spectively. According to Table 5.1, a number of interesting observations are made

on the results for CIDP patients.

First, feature f32 is found in all instances and always ranked the highest. It

implies that this feature best represents the characteristic of the signals of CIDP,

which is selected in the most frequent feature subsets regardless of the definition

of the negative class.
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Second, the most frequent feature set for the combined instance seems to be

the union of the feature sets of the rest of the two instances. For example, f13 and

f26 are found in the patients without CIDP instance and f27 and f11 are found in

the healthy subject instance. This may result from the fact that the signals of the

combined instance is the union of signals of the rest of the two instances.

f36 represents the difference in the average magnitude errors of the last two

temporal segments, and according to our investigation, CIDP patients have rela-

tively low value of f36. This result shows that the selected patients can maintain

the grip preciseness (or grip strength) until the very end of the examination as

compared to the rest of the subjects. Moreover, f13 indicates the MAD between

the target waveform and the patient’s response at the 6th temporal segment, where

it contains a minimal point in sinusoidal waveform. The empirical distribution

indicates that CIDP patients have relatively low error rates in that segment. More

interestingly, f27, which is selected as one of the top ranked features, shows that

the difference in MAD between the 5th and 6th temporal segments is relatively

high. These results indicate that CIDP patients lose their grip muscle control

when the amplitude of the waveform starts to increase. Thus, patients may have

trouble with the required grip strength.

5.6.5 Patient-Independent Ailment-Specific Analysis

Patient-independent classification involves validating the signals of patients that

are excluded from those being used to train the classification model. (e.g., learning

on CVA patient #1, #2, #3 and validating on CVA patient #4). This preliminary

study is particularly important to investigate if the system can provide ailment

specific information without previous history of a new patient. Furthermore, it

demonstrates the robustness and independence of the proposed system to the data

on which the system is initially constructed. In this experiment, four different

classification instances are considered as shown in Table 5.2. For each classifica-
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Table 5.2: Summary of the experimental results on patient independent ailment

classification.

Positive Negative Classification True True

Class Class Accuracy Positive Negative

CVA Healthy 0.9167 0.9091 0.9231

Healthy CVA 1.0000 1.0000 1.0000

CIDP Healthy 0.7610 0.8276 0.5385

Healthy CIDP 0.8542 0.8462 0.8276

tion instance, the classification accuracy is averaged among all learning-validation

dataset combinations (i.e., leave-one-patient-out cross validation).

The selected features were different among different learning-validating set

combinations within a classification instance. For the CVA vs. Healthy Subject

instance, the number of features in the most frequent feature subsets for the four

combinations were 2, 2, 3, and 3. In order to investigate the most frequent feature

subsets of this patient-independent classification results, the following analysis has

been performed.

First, the top ten ranked features from each learning-validating combination

have been extracted. The reason that we observe the top ten features (out of

45 features) is to verify that relatively small number of motor characteristics can

generalize the signals of the same ailment through patient independent analysis.

Then the features that have appeared in all of those four top ten feature sets

are observed. These features for CVA patients are Find = [f39 f36 f43 f42 f38

f37]. In other words, the same six features are shared among the top ten ranked

features when the classification is performed in a patient-independent way. This is

a strong evidence that similar motor characteristics are observed among patients

with CVA.

Next, the top ten ranked features are extracted from the results of the CVA
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vs. Healthy Subject instance from Section 5.6.4 (i.e., the result shown in the third

row of Table 5.1). The top ten ranked features were Fdep = [f39 f36 f43 f42 f37 f46

f38 f45 f40 f16]. It can be easily observed that Find ⊂ Fdep, that is, similar features

are observed across all the patients with CVA. Note also that features f39 and

f36, which were the selected features in Section 5.6.4, also appeared as the top

two features for all learning-validating combinations in the patient independent

classification.

Similar observations were made with CIDP patients.

5.7 Discussion and Future Work

Our main goal in this study was to demonstrate the efficiency of the presented

handgrip device and its back-end data analysis for diagnosis of hand movement

deficits. Given that clinical data collection is an expensive and time consuming

process, we decided to validate our system based on a pilot clinical trial with

limited patient population. For this, we performed an in-depth data analysis on

the grip tracking signals collected from 16 subjects at St. Vincent Medical Center

(Los Angeles, CA) and have achieved promising results. We believe that this

proof-of-concept opens new routes for us to apply the proposed methods to a

larger population.

With larger datasets, the system also can be configured to consider varying

levels of granularity in the levels of motor disorders. For example, the NIH Storke

Scale (NIHSS) is a widely used tool that classifies the level of impairment caused

by a stroke [Hag11]. The proposed measurement model can be independently

constructed on each of these classes, which allows for an accurate analysis of

motor symptoms at different levels of severity.

The validation of the system to reflect the changes in motor performance before

and after a medical treatment (e.g., operational surgery) is also an important issue
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to be addressed. In an ongoing clinical trial, we are conducting a longitudinal

study on a larger patient population through a collaboration with the UCLA

Department of Neurosurgery, which includes patients with spinal cord injury in

cervical region.

5.8 Conclusion

In this chapter, we introduce a portable handgrip device and its associated data

analysis method, which together quantify hand-movement performance for pa-

tients with movement disorders. Two data analysis methods are discussed: a

comprehensive metric for quantifying motor performance and an ailment-based

comparative analysis. We showed that the comprehensive metric that quantifies

motor performance can successfully distinguish patients with hand-motor deficits

from healthy subjects. More importantly, the subset features that contribute the

most to these classification instances are discussed in detail in order to provide

intuitive analysis on ailment conditions. This study enables new opportunities for

accurate quantification of an individual’s ailment condition, disease severity, and

specific physiological symptoms.
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CHAPTER 6

Conclusion

This dissertation provided a comprehensive overview of target tracking tests based

on a novel handgrip device. The contributions of this thesis can be summarized

as the following.

1. Validation of reliability and validity of the target tracking test using machine

learning algorithms.

2. Quantifying hyperexcited hand movements of CSM patients.

3. Introducing a method that predicts the postoperative functional outcomes

based on the patients’ preoperative information using Gaussian Process Re-

gression.

4. Demonstrating the results of applying the target tracking tests on other

neuromotor ailments such as CVA and CIDP.

The results reported in this dissertation show a great potential of the device

to be used as an effective physical monitoring tool for CSM patients. The mean

classification accuracy of the detection of motor dysfunction of CSM patients com-

pared to control subjects was 78.9%. The system’s correlation to the perceived

level of motor dysfunction produced a mean error rate of 11.0% and its respon-

siveness achieved a maximum classification result of 88.2%.

The detection of hyperexcitation of hand muscle showed 99.5%, and its clini-

cal significance was demonstrated by comparing the improvement (relaxation) of
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hyperexcitation to the postoperative perceived motor deficits.

The prediction of the postoperative functional outcomes using Gaussian Pro-

cess Regression showed 9.6% and 1.1% error rates for ODI and target tracking

results, respectively.

The system also demonstrated its ability to detect (classify) other types of

ailments that carry neuromotor deficits: 95.00% of detection accuracy for CVA

and 91.42% for CIDP.

6.1 Future Work in Target Tracking Tests

All the data analyses performed in this dissertation are based on cross validations

(or hold-out strategy as in Chapter 2 and Chapter 4) in order to minimize the

chances of overfitting and to provide more fair results rather than optimistic re-

sults. However, the sample size considered in this work (maximum of 30 CSM

patients and 30 control subjects) is still not sufficient to generalize the target

patient population. This cohort study is an on-going study that will continue

collecting data. The future work should include a larger sample size (e.g., 100

patients) to provide more generalized results. Furthermore, with a larger sample

size, future work should consider a stratified (or clustered) data analysis based on

demographic and clinical information such as the location of the disc herniation,

age, ODI, and the handgrip score. This will provide a classification or regres-

sion model based on features that are specific to the motor characteristics of the

subgroups, which would enhance the quantification of motor functions.

As discussed in Chapter 4, the handgrip device and the target tracking system

have a great potential to be used for remote patient monitoring since the system

is inexpensive, highly mobile, simple to use, and has relatively short testing dura-

tion. Human-computer interactive factors that will enhance patients’ adherence

to the system for longitudinal monitoring is an interesting future work. More
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specifically, since CSM is a chronic ailment, human-computer interactive factors

for elderly patients is necessary; gamification of medical devices (e.g., [FCZ11] is

an interesting example.

6.2 Future Work in Degenerative Lumbar Spinal Disorder

The works presented in this paper only consider patients with cervical disorders

with hand movement deficits. Degenerative spinal disorder is also common in

lower back, which is also known as Lumbar Spinal Stenosis (LSS). One of the

major complains of LSS patients is the impaired walking due to radiation of

pain or neuromotor dysfunction. To address similar objectives (e.g., quantify

the level of motor performance) for LSS patients, we have implemented a smart

shoes equipped with (i) seven pressure sensors mounted on the insole, (ii) 3-axis

accelerometer, and (iii) 3-axis gyroscope on the top of each foot. The sensor-

equipped shoe is illustrated in Fig. 6.1. The smart shoes are also equipped with

an embedded system with wireless transmitter that captures the sensory signals

in real-time and sends them to the gateware (i.e., a laptop in our clinical set-

ting). Various dimensions of gait performance can be analyzed, for example, (i)

walking velocity, (ii) stride length, (iii) stride period, (iv) symmetry index, (v)

distribution of weights on the foot, and many more. A clinical study has been

conducted on approximately 16 patients at the time that this thesis is written,

and is currently on-going. The quantification methodologies introduced in this

paper can be similarly applied to the gait data. However, data pre-processing and

parameter optimization need to be re-designed to the new feature dimensions.
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Figure 6.1: Picture of the smart shoe designed for lumbar spinal patients.
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