Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3

Abstract

The tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB). Here, we present biochemical and physiological evidence that CymA interacts with menaquinol (MQH2) substrates. Fluorescence quench titration with the MQH2 analog, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), was used to demonstrate quinol binding of E. coli cytoplasmic membranes enriched with various forms of CymA. Wild-type CymA bound HOQNO with a K d of 0.1–1 μM. It was also shown that the redox active MQH2 analog, 2,3-dimethoxy-1,4-naphthoquinone (DMNH2), could reduce CymA in cytoplasmic membrane preparations. Based on a CymA homology model made from the NrfH tetraheme cytochrome structure, it was predicted that Lys91 would be involved in CymA-quinol interactions. CymA with a K91Q substitution showed little interaction with HOQNO. In addition, DMNH2-dependent reduction of CymA-K91Q was diminished by 45% compared to wild-type CymA. A ΔcymA ANA-3 strain containing a plasmid copy of cymA-K91Q failed to grow with arsenate as an electron acceptor. These results suggest that Lys91 is physiologically important for arsenate respiration and support the hypothesis that CymA interacts with menaquinol resulting in the reduction of the cytochrome.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View