Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

The Role of Adipsin, Complement Factor D, in the Pathogenesis of Graves Orbitopathy.

Abstract

PURPOSE: Graves orbitopathy (GO) is an orbital manifestation of autoimmune Graves disease, and orbital fibroblast is considered a target cell, producing pro-inflammatory cytokines and/or differentiating into adipocytes. Adipose tissue has been focused on as an endocrine and inflammatory organ secreting adipokines. We investigated the pathogenic role of a specific adipokine, adipsin, known as complement factor D in Graves orbital fibroblasts. METHODS: The messenger RNA (mRNA) expression of multiple adipokines was investigated in adipose tissues harvested from GO and healthy subjects. Adipsin protein production was analyzed in primary cultured orbital fibroblasts under insulin growth factor (IGF)-1, CD40 ligand (CD40L) stimulation, and adipogenesis. The effect of blocking adipsin with small interfering RNA (siRNA) on pro-inflammatory cytokine production and adipogenesis was evaluated using quantitative real-time PCR, Western blot, and ELISA. Adipogenic differentiation was identified using Oil Red O staining. RESULTS: Adipsin gene expression was significantly elevated in GO tissue and increased after the stimulation of IGF-1 and CD40L, as well as adipocyte differentiation in GO cells. Silencing of adipsin suppressed IGF-1-induced IL-6, IL-8, COX2, ICAM-1, CCL2 gene expression, and IL-6 protein secretion. Adipsin suppression also attenuated adipocyte differentiation. Exogenous treatment of recombinant adipsin resulted in the activation of the Akt, ERK, p-38, and JNK signaling pathways. CONCLUSIONS: Adipsin, secreted by orbital fibroblasts, may play a distinct role in the pathogenesis of GO. Inhibition of adipsin ameliorated the production of pro-inflammatory cytokines and adipogenesis in orbital fibroblasts. Our study provides an in vitro basis suggesting adipsin as a potential therapeutic target for GO treatment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View