Skip to main content
eScholarship
Open Access Publications from the University of California

SF6 Negative Ion Formation in Charge Transfer Experiments.

Abstract

In the present work, we report an update and extension of the previous ion-pair formation study of Hubers, M.M.; Los, J. Chem. Phys.1975, 10, 235-259, noting new fragment anions from time-of-flight mass spectrometry. The branching ratios obtained from the negative ions formed in K + SF6 collisions, in a wide energy range from 10.7 up to 213.1 eV in the centre-of-mass frame, show that the main anion is assigned to SF5- and contributing to more than 70% of the total ion yield, followed by the non-dissociated parent anion SF6- and F-. Other less intense anions amounting to <20% are assigned to SF3- and F2-, while a trace contribution at 32u is tentatively assigned to S- formation, although the rather complex intramolecular energy redistribution within the temporary negative ion is formed during the collision. An energy loss spectrum of potassium cation post-collision is recorded showing features that have been assigned with the help of theoretical calculations. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom are performed to support the experimental findings. Apart from the role of the different resonances participating in the formation of different anions, the role of higher-lying electronic-excited states of Rydberg character are noted.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View