Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A WW Tandem-Mediated Dimerization Mode of SAV1 Essential for Hippo Signaling.

  • Author(s): Lin, Zhijie;
  • Xie, Ruiling;
  • Guan, Kunliang;
  • Zhang, Mingjie
  • et al.
Abstract

The canonical mammalian Hippo pathway contains a core kinase signaling cascade requiring upstream MST to form a stable complex with SAV1 in order to phosphorylate the downstream LATS/MOB complex. Though SAV1 dimerization is essential for the trans-activation of MST, the molecular mechanism underlying SAV1 dimerization is unclear. Here, we discover that the SAV1 WW tandem containing a short Pro-rich extension immediately following the WW tandem (termed as "WW12ex") forms a highly stable homodimer. The crystal structure of SAV1 WW12ex reveals that the Pro-rich extension of one subunit binds to both WW domains from the other subunit. Thus, SAV1 WW12ex forms a domain-swapped dimer instead of a WW2 homodimerization-mediated dimer. The WW12ex-mediated dimerization of SAV1 is required for the MST/SAV1 complex assembly and MST kinase activation. Finally, we show that several cancer-related SAV1 variants disrupt SAV1 dimer formation, and thus, these mutations may impair the tumor-suppression activity of SAV1.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View