- Main
Immobilization of Microcystin by the Hydrogel–Biochar Composite to Enhance Biodegradation during Drinking Water Treatment
Abstract
Microcystin-LR (MC-LR), the most common algal toxin in freshwater, poses an escalating threat to safe drinking water. This study aims to develop an engineered biofiltration system for water treatment, employing a composite of poly(diallyldimethylammonium chloride)-biochar (PDDA-BC) as a filtration medium. The objective is to capture MC-LR selectively and quickly from water, enabling subsequent biodegradation of toxin by bacteria embedded on the composite. The results showed that PDDA-BC exhibited a high selectivity in adsorbing MC-LR, even in the presence of competing natural organic matter and anions. The adsorption kinetics of MC-LR was faster, and capacity was greater compared to traditional adsorbents, achieving a capture rate of 98% for MC-LR (200 μg/L) within minutes to tens of minutes. Notably, the efficient adsorption of MC-LR was also observed in natural lake waters, underscoring the substantial potential of PDDA-BC for immobilizing MC-LR during biofiltration. Density functional theory calculations revealed that the synergetic effects of electrostatic interaction and π-π stacking predominantly contribute to the adsorption selectivity of MC-LR. Furthermore, experimental results validated that the combination of PDDA-BC with MC-degrading bacteria offered a promising and effective approach to achieve a sustainable removal of MC-LR through an "adsorption-biodegradation" process.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-