Skip to main content
eScholarship
Open Access Publications from the University of California

Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

  • Author(s): Sannibale, F
  • Filippetto, D
  • Johnson, M
  • Li, D
  • Luo, T
  • Mitchell, C
  • Staples, J
  • Virostek, S
  • Wells, R
  • Byrd, JM
  • et al.
Abstract

© 2017 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/" Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R&D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wave successfully demonstrated in the past few years the targeted brightness and reliability. Nevertheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. In this paper, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.

Main Content
Current View