Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment of Click Chemistry Product Fragmentation

Published Web Location
No data is associated with this publication.

Mass spectrometry-based chemoproteomics has enabled functional analysis and small molecule screening at thousands of cysteine residues in parallel. Widely adopted chemoproteomic sample preparation workflows rely on the use of pan cysteine-reactive probes such as iodoacetamide alkyne combined with biotinylation via copper-catalyzed azide-alkyne cycloaddition (CuAAC) or "click chemistry" for cysteine capture. Despite considerable advances in both sample preparation and analytical platforms, current techniques only sample a small fraction of all cysteines encoded in the human proteome. Extending the recently introduced labile mode of the MSFragger search engine, here we report an in-depth analysis of cysteine biotinylation via click chemistry (CBCC) reagent gas-phase fragmentation during MS/MS analysis. We find that CBCC conjugates produce both known and novel diagnostic fragments and peptide remainder ions. Among these species, we identified a candidate signature ion for CBCC peptides, the cyclic oxonium-biotin fragment ion that is generated upon fragmentation of the N(triazole)-C(alkyl) bond. Guided by our empirical comparison of fragmentation patterns of six CBCC reagent combinations, we achieved enhanced coverage of cysteine-labeled peptides. Implementation of labile searches afforded unique PSMs and provides a roadmap for the utility of such searches in enhancing chemoproteomic peptide coverage.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item