UCLA

Posters

Title

SYS3: Cyclops: Image Based Sensing for Wireless Sensor Networks

Permalink

https://escholarship.org/uc/item/6kd570mj

Authors

Mohammad Rahimi Deborah Estrin Mani Srivastava et al.

Publication Date

2005

Center for Embedded Networked Sensing

Cyclops - Image Based Sensing for Wireless Sensor Networks

Mohammad Rahimi, Deborah Estrin, Mani Srivastava

CENS

Agilent Technologies

Rick Baer, Jay Warrior **Agilent Laboratories**

Problem: Vision Network

Why Vision

- Vision provides humans with unmatched capabilities to disambiguate the environment
 - Context, texture, Shape or change in shape, Presence or absence, Displacement, Interaction, Color
- Low power networks of image sensors
 - Enables new classes of applications
 - · Security ,Biology, Precision Agriculture, Gesture recognition, Enhanced toys
 - Lossy inferences that reinforce by multiple observations in the network
 - · Multiple view, Avoid occlusion, Close-up observation

Enabling Technology

- CMOS vision sensors are low power and low cost
- Many vision inferences can be performed on lowquality images
- Image capture and image interpretation functions can be integrated on a single chip
 - Low power capture
 - Low power lightweight inference
 - Scalability in numbers can lead to less power hungry algorithms?

Our Approach

Hardware Design Principles

- Low power consumption
- On the order of a sensor network node
- Simple interface
 - Mote class devices
- **On-demand access**
 - Computation
 - Clocking
 - Memory
- Flexible Sensor
 - Sensor for applicability to a variety of sensor network problems

Hardware

- Stand Alone MCU
 - Low power computation for inference
 - Isolate delay stringent networking from imaging
- - Low power frame grabber with controlled clocking
 - Dedicated logic at the same time as capture
- Imager
 - CMOS, medium quality and Low power
 - Access to lower layer of imaging such as exposure, raw data

 $B_n = \lambda \times B_{n-1} + (1 - \lambda) \times \text{Im } g$

External SRAM

- Image capture and manipulation buffer
- Auto sleep
- External FLASH
 - Permanent storage such as template matching

The Great Challenge

Vision Algorithms

- Designed for small number of highly capable nodes
- Distributed image sensing has not been the norm
- Vision algorithms are power hungry

· Vision Sensors

- Complex, human pleasing image
- High clocking, lots of unnecessary flexibility

Some Power and Time Benchmarking

Software Design Principles

- Transparency in using resources
 - Still supporting their automatic relaxation to the lowest possible power state.
- Supporting the long computations
 - Image inference pipeline

Synchronized access

- MCU and the CPLD to shared resources such as SRAM and the imager

Software

· TinvOS, nesC

- To use component with clean interfaces
- Leverage available code, scheduler and support

Sensor Application

Communication with host to making Cyclops a sensor

Devices

Hardware drivers

Libraries

- Hardware independent
- Structural libraries
 - Matrix
 Statistics
- histogran advanced libraries
- Background subtraction
 - Coordinate conversion

Results

Object Tracking

- · Periodic wake-up
- **Background model**
- Moving average of instantaneous images
- Calculate foreground model
- Detect presence of object and its location
 - based on luminance threshold and size filter
- Run Time depends on the image size
 - 240ms (128*128), 16.8ms (32*32)

Gesture Recognition

- · Trade simplicity vs. speed
 - Limited set of vocabulary
- Using orientation histogram as feature Orientation texture of a hand pose provides
 - robustness to illumination changes Histogram provides translational independence

· Train phase to create and album of postures

Test phase compare against the trained vocabulary

Debugging Environment

 Both into device operation and flow of algorithm

Looking at Cyclops memory

- To record images and results
- Design algorithm offline
- Debug the the algorithms implementation

Observing multiple Cyclops

- Multiple Cyclops through serial multiplexer
- Extension over radio relay for extending the coverage

