Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The inflated Chern-Simons number in spectator chromo-natural inflation

Abstract

The chromo-natural inflation (CNI) scenario predicts a potentially detectable chiral gravitational wave signal, generated by a Chern-Simons coupling between a rolling scalar axion field and an SU(2) gauge field with an isotropy-preserving classical background during inflation. However, the generation of this signal requires a very large integer Chern-Simons level, which can be challenging to explain or embed in a UV-complete model. We show that this challenge persists in the phenomenologically viable spectator field CNI (S-CNI) model. Furthermore, we show that a clockwork scenario giving rise to a large integer as a product of small integers can never produce a Chern-Simons level large enough to have successful S-CNI phenomenology. We briefly discuss other constraints on the model, both in effective field theory based on partial-wave unitarity bounds and in quantum gravity based on the Weak Gravity Conjecture, which may be relevant for further explorations of alternative UV completions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View