Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Subgenual cingulate connectivity and hippocampal activation are related to MST therapeutic and adverse effects

Abstract

Aberrant connectivity between the dorsolateral prefrontal cortex (DLPFC) and the subgenual cingulate cortex (SGC) has been linked to the pathophysiology of depression. Indirect evidence also links hippocampal activation to the cognitive side effects of seizure treatments. Magnetic seizure therapy (MST) is a novel treatment for patients with treatment resistant depression (TRD). Here we combine transcranial magnetic stimulation with electroencephalography (TMS-EEG) to evaluate the effects of MST on connectivity and activation between the DLPFC, the SGC and hippocampus (Hipp) in patients with TRD. The TMS-EEG was collected from 31 TRD patients prior to and after an MST treatment trial. Through TMS-EEG methodology we evaluated significant current scattering (SCS) as an index of effective connectivity between the SGC and left DLPFC. Significant current density (SCD) was used to assess activity at the level of the Hipp. The SCS between the SGC and DLPFC was reduced after the course of MST (p < 0.036). The DLPFC-SGC effective connectivity reduction correlated with the changes in Hamilton depression score pre-to-post treatment (R = 0.46; p < 0.031). The SCD localized to the Hipp was reduced after the course of MST (p < 0.015), and the SCD change was correlated with montreal cognitive assessment (MOCA) scores pre-post the course of MST (R = -0.59; p < 0.026). Our findings suggest that MST treatment is associated with SGC-DLPFC connectivity reduction and that changes to cognition are associated with Hipp activation reduction. These findings demonstrate two distinct processes which drive efficacy and side effects separately, and might eventually aid in delineating physiological TRD targets in clinical settings.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View