Skip to main content
eScholarship
Open Access Publications from the University of California

A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing

  • Author(s): Gerling, John
  • Advisor(s): Cheung, Nathan W
  • et al.
Abstract

This dissertation is concerned with the development of a novel, versatile optical sensor platform for optical metrology and chemical sensing. We demonstrate the feasibility of embedding optical components between bonded silicon wafers with receptor cavities and optical windows to create a self-contained sensor microsystem that can be used for in-situ measurement of hostile environments. Arrays of these sensors internal to a silicon wafer can enable optical sensing for in-situ, real-time mapping and process development for the semiconductor industry in the form of an instrumented substrate. Single-die versions of these optical sensor platforms can also enable point-of-care diagnostics, high throughput disease screening, bio-warfare agent detection, and environmental monitoring. Our first discussion will focus on a single-wavelength interferometry-based prototype sensor. Several applications are demonstrated using this single wavelength prototype: refractive index monitoring, SiO2 plasma etching, chemical mechanical polishing, photoresist cure and dissolution, copper etch end-point detection, and also nanopore wetting phenomena. Subsequent sections of this dissertation will describe efforts to improve the optical sensor platform to achieve multi-wavelength sensing function. We explore the use of an off-the-shelf commercial RGB sensor for colorimetric monitoring of copper and aluminum thin-film etchings. We then expand upon our prior work and concepts to realize a fully integrated, chip-sized microspectrometer with a photon engine based on a diffraction grating. The design, fabrication, and demonstration of a working prototype with dimensions < 1 mm thick using standard planar microfabrication techniques is described. Proof-of-concept demonstrations indicate the working principle of dispersion, although with a low spectral resolution of 120 nm. With working knowledge of the issues of the first prototype, we present an improved 5-channel microspectrometer with a spectral range 400-900 nm and demonstrate its ability for spectral identification with 3 different phosphor powder samples. Finally, we conclude with suggestions for future areas of research.

Main Content
Current View