Skip to main content
Download PDF
- Main
Functional Brain Basis of Hypnotizability
Published Web Location
https://doi.org/10.1001/archgenpsychiatry.2011.2190Abstract
Context
Focused hypnotic concentration is a model for brain control over sensation and behavior. Pain and anxiety can be effectively alleviated by hypnotic suggestion, which modulates activity in brain regions associated with focused attention, but the specific neural network underlying this phenomenon is not known.Objective
To investigate the brain basis of hypnotizability.Design
Cross-sectional, in vivo neuroimaging study performed from November 2005 through July 2006.Setting
Academic medical center at Stanford University School of Medicine.Patients
Twelve adults with high and 12 adults with low hypnotizability.Main outcome measures
Functional magnetic resonance imaging to measure functional connectivity networks at rest, including default-mode, salience, and executive-control networks; structural T1 magnetic resonance imaging to measure regional gray and white matter volumes; and diffusion tensor imaging to measure white matter microstructural integrity.Results
High compared with low hypnotizable individuals had greater functional connectivity between the left dorsolateral prefrontal cortex, an executive-control region of the brain, and the salience network composed of the dorsal anterior cingulate cortex, anterior insula, amygdala, and ventral striatum, involved in detecting, integrating, and filtering relevant somatic, autonomic, and emotional information using independent component analysis. Seed-based analysis confirmed elevated functional coupling between the dorsal anterior cingulate cortex and the dorsolateral prefrontal cortex in high compared with low hypnotizable individuals. These functional differences were not due to any variation in brain structure in these regions, including regional gray and white matter volumes and white matter microstructure.Conclusions
Our results provide novel evidence that altered functional connectivity in the dorsolateral prefrontal cortex and dorsal anterior cingulate cortex may underlie hypnotizability. Future studies focusing on how these functional networks change and interact during hypnosis are warranted.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%