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BACKGROUND 

Benign tissue from a tumor-containing organ is commonly the only available source for 

obtaining a patient’s unmutated genome for use in cancer research. While it is critical to 

identify histologically normal tissue that is independent of the tumor lineage, few 

additional considerations are applied to the choice of this material for such 

measurements. 

METHODS 

Normal formalin-fixed, paraffin-embedded seminal vesicle and urethral tissues, in 

addition to whole blood, were collected from 31 prostate cancer patients having 

undergone radical prostatectomy. Genotype concordance was evaluated for DNA from 

each tissue source in relation to whole blood. 

RESULTS 

Overall, there was a greater genotype call rate for DNA derived from urethral tissue 

(97.0%) in comparison with patient-matched seminal vesicle tissues (95.9%, p = 

0.0015). Furthermore, with reference to patient-matched peripheral blood, urethral 

samples exhibited higher genotype concordance (94.1%) than that of seminal vesicle 

samples (92.5%, p = 0.035). 

CONCLUSIONS 

These findings highlight the heterogeneity between diverse sources of DNA in genotype 

measurement and motivate consideration of normal tissue biases in tumor-normal 

analyses. 



Introduction 

Disease screening and risk-modeling involve the integration of increasingly diverse 

sources of biological information. Innovations in high-throughput assay technologies 

have enabled the acquisition of biological data at an unprecedented scale. 

Subsequently, the development of a clinically actionable model of disease risk now 

involves traversing multiple dimensions of biological measurements, including protein 

levels, gene expression levels, and germline DNA polymorphisms, in addition to clinical 

and sociodemographic variables. Recent studies have demonstrated that the predictive 

power of risk models that integrate diverse biomarkers may be greatly improved in 

comparison to traditional screening approaches based on clinical data and limited 

biomarkers [1,2]. Hence, the methods by which biological data are acquired deserve 

special attention, as they may influence downstream predictive performance. 

 One consideration is the choice of appropriate biospecimen from which 

biomarkers will be measured. In genetic association studies of complex disease, the 

DNA used for measuring germline variants is often purified from blood, oral scrapings, 

or saliva [3,4]. However, retrospective tumor-normal research analyzing mutations, copy 

number, and gene expression in tissue from biopsy or surgery often relies on tumor-

adjacent normal tissue as the only possible source for germline DNA genotypes [5]. 

While previous studies have examined the genotyping performance of select normal 

tissues in comparison with blood [6–8], the issue of how different sources of normal 

tissue influence the result of germline DNA genotyping, and accordingly the validity of 

disease risk predictions that model such genotypes, has been generally overlooked. 



 In the development of an integrated risk prediction model to discern aggressive 

versus indolent prostate cancer, we hypothesized that distinct sources of normal tissue 

may perform differently in the context of high-throughput genetic analyses. Here we 

analyze surgically resected specimens from patients with prostate cancer to compare 

genotyping results for DNA samples derived from archival normal tissues of the 

prostatic urethra and seminal vesicle. 

Materials and Methods 

Tissue Preparation 

We obtained 93 normal samples (patient-matched blood, urethral tissue, and seminal 

vesicle tissue) from 31 patients who had undergone radical prostatectomy. All tissue 

was obtained using a 2 mm dermal punch to biopsy archival formalin-fixed, paraffin-

embedded (FFPE) tissue blocks. A new punch was used to collect each biopsy from 

each block, and a single punch was made each time and placed into an Eppendorf tube 

for DNA extraction. The region of interest from each block to be biopsied was marked 

for punching. For each prostatectomy, the slides and pathology report of each case 

were reviewed. Seminal vesicle tissue from the side opposite to that most involved by 

prostate cancer was used; the area marked included both the seminal vesicle 

epithelium and the muscle wall, and the punch was taken to include both. The area of 

the urethra to be punched was marked in an area at least 5 mm from any tumor foci and 

included both urothelium and underlying stromal tissue, in a manner to exclude prostate 

glandular tissue. Note that while all punches of seminal vesicle contained 100% tissue 

throughout, many punches of urethra were taken from the border of the tissue with 

surrounding FFPE such that the punch may not have been completely composed of 



tissue. Normal prostate tissue was excluded from consideration due to several known 

obstacles to the identification of histologically pure samples of normal prostate, 

including the presence of multiple, scattered heterogeneous tumor foci [9], prostatic 

intraepithelial neoplasia [10–12], and field effects due to the presence of nearby 

neoplasia(s) [13], all of which are known to induce genetic abnormalities. 

DNA Purification and Genotyping 

After the paraffin layer was removed, 1 mm diameter cores punched from FFPE tissue 

blocks were sectioned into 20–30 pieces using a sterile razor blade. Samples were then 

vortexed with 1 ml xylene, followed by 2min of centrifugation at room temperature. Next, 

samples were again vortexed with 1 ml of 100% ethanol and pelleted by centrifugation. 

The supernatant was discarded and residual solvent was evaporated at room 

temperature. Next, DNA was purified from blood samples (Promega Wizard Genomic 

DNA Purification Kit) and FFPE tissues (QIAamp DNA FFPE Tissue Kit). To boost DNA 

yields prior to genotyping, 200 ng of input DNA from each sample was amplified 

(Affymetrix Axiom 2.0 Reagent Kit) via isothermal incubation at 37°C for 48hr. The 

sample DNA was next fragmented into pieces ranging from 25 to 125 base pairs, 

followed by isopropanol precipitation. The Affymetrix GeneTitan Multi-Channel 

Instrument was used for sample genotyping. 

Custom Microarray Design 

In collaboration with Affymetrix Inc., we designed a custom DNA microarray to assay 

functional and putative prostate cancer specific variation. While the array features many 

rare (< 1% minor allele frequency) and coding variants, its design was not limited to rare 



or exonic variation and broadly targeted genetic markers of interest genome-wide in a 

number of different functional categories. 

 The variant selection procedure was conducted as follows. First, a set of target 

markers, including both single nucleotide polymorphisms (SNPs) and insertion-deletion 

(indel) mutations, was constructed. The targets included previous GWAS findings 

(genome-wide significant and suggestive) in prostate cancer, associated traits (PSA 

level and prostate cancer gene-by-gene interactions), other correlated traits (breast 

cancer, height, BMI, obesity, diabetes), and uncorrelated traits (NHGRI GWAS catalog 

polymorphisms). Additionally, a list of pan-cancer candidate genes was compiled and 

rare variants in windows centered around these genes were included in the target set. 

Rare variants in frequently mutated genes from the somatic cancer database COSMIC 

were also included. Furthermore, rare variants from a series of in-house whole genome 

and whole exome sequence analyses (of African American prostate cancer patient 

normal genomes [14], normal prostate exomes from the TCGA and dbGaP [15,16], and 

prostate cell line DNAse I hypersensitive sites [17]) were added to the target set. Finally, 

variants from previous Affymetrix microarrays were also targeted. These included the 

Exome 319 chip and the UK Biobank [18] array (excluding the GWAS backbone), which 

covered a broad range of functional categories including missense mutations and 

putative deleterious variants from the Human Gene Mutation Database. 

 The next step was to select which probesets would be directly genotyped on the 

microarray. Probesets were selected from a pool of candidate markers by an iterative, 

greedy algorithm which prioritized candidates based on their coverage of the target set. 

In order to reduce redundancy with previous GWAS arrays, candidates were chosen 



with complementarity to GWAS arrays previously assayed in the Kaiser Permanente 

GERA cohort [3,19,20] by drawing from a candidate set disjoint from the GWAS array 

markers. This produced a set of markers optimized for coverage of the target set. 

Sample and Variant Quality Control 

We excluded samples from our analyses if there was insufficient resolution between 

marker probeset intensities (axiom_dishqc_DQC < 0.75) in any of the three tissue 

sources. This resulted in the exclusion of two samples and decreased the sample size 

from 31 initial subjects to 29 total. Out of the 29 subjects, 25 self-identified ethnically as 

Caucasian, one as African American, and three as “Other.” All subjects were designated 

as clinical T stage one or two and Gleason 6 (3 + 3) at diagnosis, although certain 

patients were upgraded and upstaged after surgery. These subject demographics and 

others are described in detail in Table I. Genotyping and sample quality control was 

performed using the Affymetrix Power Tools software suite. 

 To exclude variants susceptible to low-confidence genotype calls due to 

misclustering, variants with a minor allele frequency less than 5% are omitted from the 

reported concordance estimates. This minor allele frequency filter reduced the number 

of markers from 416,047 total variants to 127,847 common polymorphisms, from which 

call rates and concordance estimates were computed and summarized in Table I. 

However, for completeness, analyses where markers were stratified by minor allele 

frequency (in the main text and supplementary figures) include all 416,047 markers 

segregated into their respective minor allele frequency bins. These minor allele 

frequencies were based on the European (EUR) super population of the 1000 Genomes 

Project Phase 3 release [21]. 



To exclude variants susceptible to low-confidence genotype calls due to misclustering, 

variants with a minor allele frequency less than 5% are omitted from the reported 

concordance estimates. This minor allele frequency filter reduced the number of 

markers from 416,047 total SNPs to 127,847 common SNPs, from which call rates and 

concordance estimates were computed and summarized in Table I. However, for 

completeness, all minor allele frequency-stratified analyses in the main text and 

supplementary figures include all 416,047 markers segregated into their respective 

minor allele frequency bins. These minor allele frequencies were based on the 

European super population of the 1000 Genomes Project Phase 3 release [17]. 

Statistical Analyses 

Tissue sources were compared using several sample statistics (DNA quantity, genotype 

call rate, and genotype concordance; Table I), as well as clinicopathologic factors 

(“subject-level” factors). For a given genetic variant, genotype concordance was defined 

as the agreement of both called alleles at a given marker (in samples from the same 

subject). Genotype pairs containing any no-calls were excluded from concordance 

calculations. Hypothesis testing for detecting statistically significant differences between 

tissue sources was conducted via paired-sample, two-tailed t-tests. Comparisons of 

genotype statistics (“variant-level” factors) between tissue sources (Figs. 1, 2, and S2) 

were likewise conducted using weighted, paired-sample, two-tailed t-tests, with the 



weight values equal to the number of markers in a given minor allele frequency bin. 

Linear regression model selection was conducted via stepwise bidirectional elimination 

using the Akaike Information Criterion. Concordance calculations and variant QC was 

conducted using PLINK [22], while all statistical analyses and figure generation were 

performed using the R statistical computing language [23,24]. 

Results 

Sample Quality of Source DNA 

We evaluated the concordance between genotypes calls in DNA samples isolated from 

patient-matched blood, prostatic urethra (UR), and seminal vesicle (SV) normal tissues 

for 31 men with prostate cancer. Quality control procedures are described in the 

Materials and Methods section, and yielded a dataset comprised of 127,847 common 

polymorphisms measured in 29 men across each of three DNA sources (blood, UR, 

SV). 

 As expected, we observed the superior performance of blood to both normal 

FFPE tissue sources with respect to several measures. Across all samples, post-

amplification DNA yields (Table I) were significantly greater for blood than for UR (p = 

0.0091) and for SV (p = 0.0012). In turn, genotype call rate was significantly greater in 

blood (98.3%) than in UR (97.0%; p = 3.8 x 10-6) and SV (95.9%; p = 4.1 x 10-10). This 

observation supported using blood genotypes as a gold-standard reference. Hence, in 

all subsequent comparisons, concordance estimates were computed with reference to 

blood genotypes. 

 Although the genotype call rate was higher overall for UR samples in comparison 

with SV (97.0% vs. 95.9%, p = 0.0015), DNA quantities did not differ significantly 



between UR and SV (p = 0.12), suggesting that the observed difference in call rate was 

not merely a consequence of DNA quality and may reflect physiological differences 

between normal tissue sources. 

Genotype Concordance Across Individual-Level Factors 

Furthermore, UR genotypes were more concordant with blood than SV genotypes 

(94.1% vs. 92.5%, p = 0.035). To determine whether certain subject-level factors may 

explain this 1.6% concordance difference between UR and SV, we considered the 

potential confounding effect of specific variables on concordance. First, we stratified 

concordance estimates by subject age at diagnosis and found that the superiority of UR 

genotype concordance was consistent across age groups (Table I). Next, we stratified 

concordance with respect to two variables significantly associated (P < 0.05) with UR 

and SV concordance differences in a linear regression model: prostate specific antigen 

(PSA) level at diagnosis and the source DNA quantity difference (post-amplification) 

between UR and SV. Again, we found that concordance for UR was slightly better than 

for SV across all strata. This included the first and second quartiles of DNA quantity 

differences, where SV DNA was more abundant than UR DNA in all samples (Q1) or in 

the majority (Q2), although these subsets contained rather few counts and the 

differences therein were thus not individually significant. Finally, we stratified 

concordance with respect to two clinical variables of interest: pathologic Gleason score 

and pathologic T stage. These variables generally reflected the trend of higher 

concordance of UR with blood, with the exception of Gleason 7 (4 + 3), which was 

comprised of a small sample size of only two subjects. These observations support the 



notion that true differences between UR and SV tissue, rather than confounding by 

other factors, underlie the observed differences in genotype concordance with blood.  

 We also examined whether cigarette smoking status at diagnosis may have 

impacted our results. Smoking was categorized into three levels: never (18 subjects), 

past (8), and current (3). One current smoker at diagnosis had 17.1% higher genotype 

concordance between UR and blood than between SV and blood, by far the greatest 

concordance difference among all studied subjects. When this subject was removed 

from our analysis, the pairwise difference in concordance among the remaining 28 

subjects weakened but remained statistically significant (94.0% vs. 92.9%; p = 0.04), 

and the concordance of UR with blood still exceeded that of SV concordance across all 

rows in Table I from which the subject was omitted. 

 We additionally identified another potential outlier subject for whom concordance 

between UR and blood was 57.4%, concordance between SV and blood was 56.9%, 

and concordance between UR and SV genotypes was 97.7%. Removal of this subject 

did not impact the statistical significance of UR and SV concordance differences (p = 

0.037). However, it did increase the average concordance levels for UR and SV to 

95.4% and 93.7%, respectively. Core punch slides for these two subjects were reviewed 

and revealed no tumor contamination, dysplasia, or general explanation for why these 

samples would have such poor concordance with blood. 

Genotype Concordance Across SNP-Level Factors 

We examined the concordance levels in different minor allele frequency (MAF) bins 

across all genotyped markers (total of 416,047 probesets, including previously filtered 

rare variants with MAF < 5%). We found that genotype concordance for UR samples 



exceeded that of SV samples across the MAF spectrum (p = 8.2 x 10-14; Fig. 1). In most 

cases, the margin of concordance differences within a given bin approached or 

exceeded one percent, reflecting the 1.6% difference observed over all common 

polymorphisms. However, while the trend of superior concordance of UR was 

maintained over all MAF bins, the margin narrowed substantially in two bins: MAF < 1% 

(+0.38%) and 1% ≤ MAF < 2% (+0.66%). One explanation for the observation of 

decreased concordance with blood and smaller differences in concordance between UR 

and SV in rare variants is simply a lack of variation, and hence potential differences, at 

such low MAFs. Another possible explanation is genotype misclustering: as the minor 

allele count at a given marker approaches zero, genotype clustering algorithms face the 

substantial difficulty of distinguishing heterozygotes from major allele homozygotes. This 

in turn contributes to errant clustering, whereby major allele homozygotes are 

incorrectly classified as heterozygotes and minor allele homozygotes, increasing the 

rate of heterozygosity. Accordingly, we observed a significant excess of heterozygosity 

in UR (p = 8.8 x 10-13) and SV (p = 6.3 x 10-18) in comparison with blood (Fig. 2) as well 

as an increasing proportion of samples with discordant genotypes in markers of 

decreased MAF (Figs. S1A and B). Moreover, SV heterozygosity significantly exceeded 

that of UR (p = 4.7 x 10-19) across the MAF spectrum and, as the difference between UR 

and SV heterozygosity narrowed in bins of increasing MAF, the difference in their 

concordance with blood simultaneously increased (Pearson’s r = -0.67, 95% CI [0.80, 

0.49], p = 8.5 x 10-8), suggesting that genotype misclustering may explain the narrower 

margins of concordance between UR and SV in rare variants. 



 To control for the effect of poor genotype clustering in rare variants, variant 

quality control was performed by Hardy–Weinberg equilibrium (HWE) filtering. When 

variants violating HWE were removed (α = 5 x 10-5), heterozygosity for all tissue 

sources decreased significantly (P < 5 x 10-19) towards expected levels. However, 

heterozygosity of SV genotypes remained elevated in comparison with UR (p = 7.2 x 

10-21) and blood (p = 1.4 x 10-13), suggesting that the superior concordance of UR and 

blood is not simply an artifact of poor genotype clustering (Fig. 2). This conclusion was 

further supported upon reexamination of concordance after HWE filtering, with UR 

concordance more clearly separated from SV concordance across all MAF categories 

(p = 1.2 x 10-36; Fig. S2A). Finally, while the differences between UR and SV call rate (p 

= 0.0010) and genotype concordance (p = 0.037) did not change substantially after 

HWE filtering, the overall genotype concordance with blood across the set of HWE 

filtered markers increased to 95.4% for UR and 94.0% for SV (Table I). These 

concordance figures for UR and SV increased to 96.6% and 95.4%, respectively, when 

increased stringency was applied to HWE filtering (a = 0.05; Fig. S2B). However, while 

more stringent variant quality control can increase the accuracy of FFPE tissue 

genotype calls in comparison with blood, there exists a tradeoff between increasing 

concordance and potentially eliminating large numbers of accurate genotype calls from 

the final dataset. 

 Finally, further examination of the classes of discordant genotype calls confirmed 

the trend of excess heterozygosity in the genotypes from UR and SV tissue. Among all 

genotyped variants (common and rare), the percentage of discordant genotypes 

switching from a homozygous call in blood to a heterozygous call was 69.8% for UR 



and 71.5% for SV. For both tissues, the next most frequent change among discordant 

genotypes was in the opposite direction, from heterozygous to homozygous (27.5% for 

UR, 26.1% for SV). To assess whether changes in copy number or loss of 

heterozygosity may contribute to the observed genotype discordances, we used the 

Affymetrix CNV Summary Tools Software package to examine copy number in each 

sample set (blood, SV, and UR) and calculate B allele frequencies for each sample. 

When considering the deviation of the B allele frequencies from expected diploid allelic 

ratios (1.0, 0.5, 0.0), we found that the genome-wide variance of this deviation was 

significantly greater for UR (p = 7.1 x 10-4) and SV (p = 7.9 x 10-8) in comparison with 

blood, and was also greater for SV than for UR (p = 0.01). Thus, significant differences 

were observed between DNA from FFPE tissue and blood DNA, and, more remarkably, 

between DNA from FFPE seminal vesicle and urethral tissue. Increased noise in the 

raw fluorescent intensities used to derive B allele frequencies (and genotype calls) may 

account for these increases in allelic fraction variance. However, it is also possible that 

there are true differences in copy number between these different DNA sources. 

Discussion 

In this study, we evaluated the differences between sources of FFPE normal tissue from 

prostate cancer patients in assaying germline genetics and found that urethral tissue 

performs more favorably than seminal vesicle tissue in relation to patient-matched 

whole blood. While germline DNA from normal seminal vesicle tissue may serve as an 

adequately concordant proxy for blood DNA in the absence of alternatives, genotype 

measurements derived from urethral tissue DNA exhibited significantly higher call rate, 

lower heterozygosity, and greater concordance with blood in comparison with seminal 



vesicle derived genotypes. Although blood remains the ideal biospecimen for genomic 

analysis, normal tissue may serve as a suitable replacement, in particular for 

retrospective and tumor-normal studies when a blood specimen can no longer be 

obtained. 

 Although studies have revealed substantial technical reproducibility (generally 

exceeding 99%) among DNA biospecimens (including blood, FFPE tissue, saliva, and 

fresh frozen vs. FFPE tissue) genotyped in replicate [25–28], our findings suggest that 

significant heterogeneity may exist between genotype calls derived from different 

tissues. In general, special attention should be placed on the choice of normal tissue for 

germline genotyping, as distinct normal tissues may yield substantially different results. 

This insight may have particular relevance to tumornormal analyses such as whole 

genome and exome sequencing, array comparative genomic hybridization (aCGH), and 

RNA-seq, where the discovery of somatic aberrations in tumors is often predicated on 

the comparison to FFPE normal tissue as a reference [15,29–31]. Consequently, 

inaccuracies in germline measurements may lead to miscalled somatic mutations. While 

our results are based on data from a microarray genotyping platform, further study may 

determine that systematic differences among normal tissue sources potentially influence 

the results of next generation sequencing analyses. 

 There are several explanations for why genotype calls may vary significantly 

between normal tissue sources. One potential source of heterogeneity is somatic 

mosaicism, whereby mutations arising during development and aging propagate into 

specific tissues. Although the variability of somatic mutation rates among normal tissues 

is supported by observed differences in somatic mutation frequencies across tumor 



types [32], the expected number of somatic mutations is relatively modest when 

considering the generational human germline mutation rate [33]. Additionally, while 

studies of genome-wide somatic copy number mosaicism have discovered 

heterogeneity in several tissues, the size and number of validated somatic copy number 

variants suggests that structural variation may play only a minor role in germline 

genotype discordance across tissues [34]. Another potential source of heterogeneity is 

the differential invasion of the glands and ducts peripheral to the prostate: if one tissue 

is particularly susceptible to prostate tumor cell invasion, the purity of the DNA extracted 

from that tissue may be compromised and impact genotype call rate and concordance. 

While prostate cancer can metastasize to the urethra in rare cases, roughly 10–18% of 

patients having undergone radical prostatectomy are estimated to have pathological 

seminal vesicle invasion [35]. In our study, however, the majority of subjects were 

designated as pathologic T-stage 2 (Table I), and thus tumor cell invasion would not be 

expected to influence peripheral tissues. Furthermore, while field effects are known to 

influence many different classes of aberrations in tumor-adjacent, normal tissue, 

including epigenetic, genotypic, cytogenetic, and morphological changes [13,36,37], the 

extent to which field effects differ between different tumor-adjacent tissues has not been 

well characterized. The contributions of each of these determinants of heterogeneity 

and mosaicism to genotype discordance among normal radical prostatectomy tissues 

are subject to future research. 

 Finally, this work represents a novel application of the Affymetrix Axiom 

microarray technology to FFPE urethra and seminal vesicle tissue genotyping. Despite 

documented issues with purification of DNA fragments longer than 100–200 base pairs 



from formalin cross-linked tissue, researchers have been able to successfully profile 

FFPE samples that are up to 30 years old [38]. Furthermore, a recent study found 

expression profiles from paired fresh frozen and FFPE samples to be highly correlated, 

both between those newly collected and others archived 14 years earlier [39]. Although 

there is a tendency for sample degradation to increase with storage time, DNA isolated 

from FFPE tissue remains relatively intact, further demonstrating the potential to study 

the large numbers of samples stored in hospitals and tissue banks worldwide. Still, not 

all samples are equal, and for the purposes of obtaining the best quality DNA for 

germline genotyping from radical prostatectomy tissues, our findings suggest that 

urethral tissue DNA is preferential to that of the seminal vesicle. 

Conclusions 

By comparing germline genotype concordance between different sources of tissue from 

radical prostatectomy specimens, we found that various normal tissue sources may in 

fact have different levels of concordance with blood. Urethral tissue genotypes exhibited 

not only increased genotype call rate, but also increased genotype concordance with 

blood in comparison with seminal vesicle derived genotypes when controlling for 

subject-level and variant-level factors. These findings motivate characterization of 

different sources of genetic heterogeneity and mosaicism in radical prostatectomy 

normal tissues and highlight the importance of identifying the source of normal tissue 

that produces the greatest validity for any given biomarker assay, including microarray 

genotyping and tumor-normal sequencing. 
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Figures 

Fig. 1. Urethra-blood genotype concordance compared with seminal vesicle-blood over 

a range of variant minor allele frequency bins. 



 

Fig. 2. Heterozygosity rate for blood, urethra, and seminal vesicle genotypes over a 

range of variant minor allele frequency bins, before (solid) and after (dashed) Hardy–

Weinberg equilibrium filtering. 



Fig. S1. Proportions of discordant counts in Seminal Vesicle-Blood (S1A) and Urethra-

Blood (S1B) comparisons over a range of 1000 Genomes Project (EUR) minor allele 

frequency bins 



 

Fig. S2. Urethra-Blood genotype concordance compared to Seminal Vesicle-Blood 

concordance among markers in Hardy-Weinberg equilibrium with significance level α = 

5 x 10-5 (S2A) and α = 0.05 (S2B) over a range of minor allele frequency bins 



Tables 

TABLE I. Genotype Summary Statistics and Concordance Stratified by Tissue Source 
and Clinicopathologic Factors 

Summary statistics and variables for 
29 research subjects and  

127,847 common SNPs (MAF > 5%)

Peripheral 
blood

Urethra 
(UR)

Seminal 
vesicle 

(SV)

Percent 
difference 
(UR - SV)

P-value

Average DNA quantity (± std. dev.) 
post-amplification

1543 ng 
(± 163)

1472 ng 
(± 129)

1425 ng 
(± 192) - 0.12

Genotype call rate  
(post-Hardy-Weinberg Equilibrium QC)

98.3% 
(97.9%)

97.0% 
(96.8%)

95.9% 
(95.8%)

+1.1% 
(+1.0%)

0.0015 
(0.0010)

Concordance of genotype calls with 
peripheral blood genotypes 

(post-Hardy-Weinberg Equilibrium QC)

100% 
(100%)

94.1% 
(95.4%)

92.5% 
(94.0%)

+1.6% 
(+1.4%)

0.035 
(0.037)

Age at 
Diagnosis 
(years)

< 55 n = 6 - 95.8% 94.2% +1.6% 0.045

55 - 60 n = 12 - 92.0% 91.1% +0.9% 0.21

> 60 n = 11 - 95.6% 93.2% +2.4% 0.25

DNA quantity 
difference post- 
amplification,  

by quartile 
(UR - SV, ng)

Q1 
[-178.4, -47.7] n = 7 - 95.6% 95.4% +0.2% 0.49

Q2 
[-47.6, 14.2] n = 7 - 89.2% 88.0% +1.2% 0.70

Q3 
[14.3, 90.4] n = 8 - 95.8% 94.7% +1.1% 0.33

Q4 
[90.5, 663.8] n = 7 - 96.0% 91.6% +4.4% 0.063

Pathologic 
Gleason Score

6 n = 20 - 93.5% 92.2% +1.3% 0.042

7 (3+4) n = 7 - 95.7% 92.8% +2.9% 0.26

7 (4+3) n = 2 - 93.8% 94.5% -0.7% 0.79

Pathologic 
T-stage

T2a n = 1 - 92.0% 91.6% +0.4% -

T2c n = 25 - 94.0% 92.3% +1.7% 0.048

T3a n = 3 - 95.6% 94.8% +0.8% 0.32

PSA at  
diagnosis 
(ng / mL)

< 4.5 n = 10 - 95.7% 92.9% +2.8% 0.08

4.5 - 6.5 n = 11 - 95.8% 94.9% +0.9% 0.14

> 6.5 n = 8 - 89.3% 88.5% +0.8% 0.95
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