
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The design and implementation of a managed network fabric

Permalink
https://escholarship.org/uc/item/6nm9c07z

Author
Huang, Nelson

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6nm9c07z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Design and Implementation of a Managed Network Fabric

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Nelson Huang

Committee in charge:

Professor Amin Vahdat, Chair
Professor Keith Marzullo
Professor Geoffrey M. Voelker

2011

Copyright

Nelson Huang, 2011

All rights reserved.

The thesis of Nelson Huang is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2011

iii

EPIGRAPH

When in doubt, use brute force.

—Butler Lampson

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract of the Thesis . xi

Chapter 1 Introduction . 1

Chapter 2 Background . 4
2.1 Fat Tree Networks . 9
2.2 Multipathing . 10

2.2.1 Equal Cost Multipath 11
2.2.2 Valiant Load Balancing 12

Chapter 3 Related work . 13

Chapter 4 Design . 16
4.1 Single Logical View . 16
4.2 Eliminating Link Oversubscription 17

4.2.1 Hedera Flow Scheduler 18
4.3 Separation of Location and Identification 20

4.3.1 PortLand Naming Scheme 21
4.4 Plug and Play . 22
4.5 High Scalability . 23

4.5.1 PortLand ARP Handling 23
4.5.2 PortLand Forwarding 24

4.6 Fault Tolerant . 25

Chapter 5 Implementation . 27
5.1 OpenFlow . 27
5.2 Constructing a Data Center 29

5.2.1 Dataplane . 29

v

5.2.2 Control Plane . 30
5.2.3 Hosts . 31

5.3 Managed Network Fabric 32
5.3.1 Fault Detection 33
5.3.2 Flow Creation . 36
5.3.3 ARP . 36
5.3.4 Flow Scheduler 38

Chapter 6 Evaluation . 40
6.1 Fault Detection Convergence Time 40
6.2 Scalability . 42
6.3 VM Migration . 44
6.4 Benchmark Communication Suite 44
6.5 Testbed Benchmark Results 45
6.6 Data Shuffle . 46

Chapter 7 Conclusion . 47
7.1 Future Work . 48

Appendix A Appendix . 50
A.1 Data Types and Message Formats 51

Bibliography . 61

vi

LIST OF FIGURES

Figure 2.1: Multi-rooted Hierarchical Tree topology. 5
Figure 2.2: K=4 Fat Tree that supports 16 hosts. 10
Figure 2.3: Example of ECMP collisions. 11

Figure 4.1: Hedera Scheduler Architecture 19
Figure 4.2: Demand Estimation Example 19
Figure 4.3: Actual MAC to Pseudo MAC Mapping. 21
Figure 4.4: ARP Handling . 24
Figure 4.5: Fault Detection . 25

Figure 5.1: OpenFlow Architecture . 28
Figure 5.2: Data Center Data Plane . 30
Figure 5.3: Data Center Control Plane . 31
Figure 5.4: Managed Network Fabric Functional Architecture 33
Figure 5.5: Secchan Datapath . 34
Figure 5.6: Secchan Threads . 35
Figure 5.7: Fabric Manager Datapath . 36
Figure 5.8: Fabric Manager Threads . 37

Figure 6.1: Convergence time with increasing faults. 41
Figure 6.2: TCP Flow Fault Convergence. 41
Figure 6.3: Fabric Manager Control Traffic. 42
Figure 6.4: CPU Requirements for ARP requests. 43
Figure 6.5: VM Migration. 44
Figure 6.6: Physical testbed benchmark suite results. 45

Figure A.1: Our Experimental Data Center 50

vii

LIST OF TABLES

Table 5.1: OpenFlow Flow Entry . 28
Table 5.2: End Host Components 2008 Prices 32

Table 6.1: Statistics for a 117GB Data Shuffle. 46

viii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Amin Vahdat, for the oppor-

tunity and pleasure of working on DCSwitch. Without his support, vision, and

humor, the milestones accomplished with the DCSwitch project would simply not

have been possible. Secondly, I would also like to thank my fellow lab members.

It was truly a pleasure to work with each member of the lab to build DCSwitch. I

would also like to thank Professor Geoffrey Voelker and Professor Keith Marzullo

for serving on my thesis committee. Their classroom teachings were invaluable in

the design and implementation of DCSwitch. A good part of the DCSwitch code

can be summarized by the words, condition variable.

Several chapters in this thesis are extended versions of content from the fol-

lowing papers, “Portland: A Scalable Fault-Tolerant Layer 2 Data Center Network

Fabric” and “Hedera: Dynamic Flow Scheduling for Data Center Networks” that

I helped co-author with Radhika Niranjan Mysore, Andreas Pamboris, Nathan

Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Sub-

ramanya, Mohammed Al-Fares, Barath Raghavan, and Professor Amin Vahdat.

Portland appears in the proceedings of the 2009 ACM SIGCOMM conference and

Hedera appears in the 2010 ACM NSDI conference.

Chapters 1, 2, 3, and 4 are an adaption of sections 1, 2, and 3 of Portland.

Section 2.2 is an adaption of multipathing as found in section 2.2 of Hedera. The

section describing the Flow Scheduler design in Chapter 5 is an adaption of section

3.2 of the Hedera paper. The remaining content of Chapter 2 and the contents of

Chapter 5 are the products of my research. The evaluation in Chapter 6 is the

result of joint work with the team members listed earlier.

ix

VITA

1995 B. S. in Applied Mathematics, Columbia University, New
York, NY

2006-2011 M. S. in Computer Science, University of California, San
Diego

PUBLICATIONS

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
“PortLand: A Scalable, Fault-Tolerant Layer 2 Data Center Network Fabric”, In
Proceedings of ACM SIGCOMM 2009.

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. “Hedera: Dynamic Flow Scheduling for Data Center Net-
works”, In Proceedings of NSDI 2010.

x

ABSTRACT OF THE THESIS

The Design and Implementation of a Managed Network Fabric

by

Nelson Huang

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Amin Vahdat, Chair

The rapid growth of Internet applications and services such as search, so-

cial networking, and cloud computing services in conjunction with the adoption of

commoditized hardware has led to the emergence of data centers consisting of tens

to hundreds of thousands of computers. A common characteristic of applications

running in these data centers is their use of parallelism in their design to enable sys-

tem performance to grow by scaling out as opposed to scaling up. User interactions

with these services often involve forwarding requests to thousands of computers in

parallel. A user search request may involve accessing an inverted index stored on

thousands of computers. In addition to the network traffic generated from users

of front-end facing systems, there is also a significant amounts of intra-data center

network traffic generated by backend applications such as MapReduce, Hadoop,

xi

and Dryad. These backend applications typically perform analytical analysis on

petabyte-sized datasets. Constructing a network fabric that can meet the per-

formance requirements of large scale data centers in an economical manner is an

immense challenge. In this thesis, we describe the implementation of a managed

network fabric intended for large scale data centers. Our system incorporates the

best features of layer 2 and layer 3 networks while seeking to avoid the shortcom-

ings of each protocol. Using commoditized hardware and software primitives, we

construct a functioning prototype that treats the network fabric as a single logical

unit and enables traffic to be dynamically provisioned in a fault tolerant manner.

Our prototype demonstrates the feasibility of building such a system and that high

performance can be achieved.

xii

Chapter 1

Introduction

Economics, convenience, and technological advantages are spurring the

growth of megasized data centers consisting of thousands to hundreds of thousands

of computers. These data centers are often located in supportive environments

that have low cost electricity, high speed fiber optic networks, and optimal cli-

mates [Rab]. As of 2006, Google had an estimated total of 450,000 servers [Hof08]

in their data centers while Yahoo! and Microsoft also operate hundreds of thou-

sands of servers [Car]. One trend that is spurring the growth of these megasized

data centers is the use of low cost computer servers. By leveraging commoditized

parts and bulk volume pricing, companies are discovering that it is cheaper and

easier to build, deploy, and administer a large number of servers concentrated into

a smaller set of data centers. Services and applications running in such an en-

vironment are commonly designed with the expectation that failure is the norm

and that increased application performance comes from scaling out as opposed to

scaling up. For applications such as search, social networking, and web commerce,

a user request is often processed by hundreds to thousands of computers in parallel

[Sha08]. These applications are often built on top of a large scale distributed file

systems [GGL] [Bor] which replicate data blocks for fault tolerance. Data blocks

in the systems typically range in size from 64 megabytes to 100 megabytes and are

used to store petabyte sized datasets. In addition to external traffic, there is also

significant intra-data center traffic from the use of parallel computing frameworks

such as MapReduce [DG], Hadoop [had], and Dryad [IBY+]. These frameworks

1

2

are used to perform backend analysis on data stored in the distributed file systems

and exhibit significant network bandwidth demands. High oversubscription ratios

in the network often cause MapReduce type jobs to become network bound. An-

other factor in the growth of data centers is the increasing use of virtualization

for both server hosting and the implementation of cloud services. In a virtualized

environment, multiple virtual servers can be hosted on a single server to increase

machine utilization and can be dynamically migrated based on machine load and

end user locality. Although it enables a data center center to maximize service

agility, virtual machine migration is also network bandwidth demanding.

Creating and supporting a large scale network fabric for the data center

environment has created a number of issues. From a topology standpoint, there is

the challenge of simply being able to create a network interconnect that can scale to

support hundreds of thousands of hosts. Because of cost and limited port densities,

large size data center networks have been constructed by interconnecting large

numbers of switches to provide the logical abstraction of a single large switch. In

addition to providing connectivity, the network topology also needs to support high

bandwidth communication between hosts and provide fault tolerance. Traditional

topologies such as the hierarchical tree grow by scaling up as opposed to scaling

out and suffer from bandwidth bottlenecks the higher network traffic travels in the

tree.

Similar challenges also exist at the network protocol level. Numerous chal-

lenges and problems exist from deploying network protocols originally designed

for LANs in a data center environment where hosts can number in the hundred

of thousands. Ethernet’s flat address space and plug-and-play nature allow for

seamless virtual machine migration and low administrative overhead. However,

Ethernet’s reliance on broadcast for discovering end hosts and its use of spanning

tree protocol limits its scalability and prevents the use of multiple paths within data

center networks. The flat address naming scheme also leads to significant forward-

ing state being stored in network switches. Although IP routing mitigates many

of Ethernet’s shortcomings, it has also introduced a new set of problems in the

data center such as high administrative overhead and complicated virtual machine

3

migration. Although IP based multipathing techniques greatly improve overall bi-

section bandwidth, they are unable to meet the bandwidth demands exhibited by

data center traffic patterns and make it difficult for hosts to communicate at their

full interface speeds.

In this thesis, we describe the design, implementation, and evaluation of a

managed network fabric tailored for data center networks. We combined the work

described described in PortLand[MPF+], and Hedera [AFRR+] to create a scalable

layer 2 network fabric. The managed network fabric preserves the positive charac-

teristics of layer 2 Ethernet, but avoids its reliance on broadcast. In addition, the

managed network fabric supports fault tolerance and multipathing for increasing

overall bisection bandwidth. We define a set of principles that guide our design

based on our analysis of challenges and issues facing existing data center design

and implementations. By adopting the use of a centralized fabric manager, our

system treats the network as a single logical unit and enables network traffic to

be dynamically provisioned onto the available paths in order to maximize network

link utilization. Our approach requires no modifications to end hosts and is tar-

geted for commoditized switches. The rest of the thesis is organized as follows. In

chapter 2, we describe how data centers are currently implemented and the prob-

lem that they face. We also outline the requirements and goals for designing and

constructing a solution. In chapter 3, we describe an overview of relevant related

work. Chapter 4 and 5 describes the design and implementation of the managed

network fabric. Chapter 6 describes the evaluation performed on the system and

lastly chapter 6 summarizes our conclusions and identifies future work. Appendix

A includes relevant pictures, diagrams, and code listings related to the work.

Chapter 2

Background

This chapter provides an overview of how data centers are currently im-

plemented and describes the challenges that they currently face when scaling out.

Afterwards, we define a set of goals for our system to address those challenges.

The prevalent use of commoditized components along with the massive

growth in cloud computing has made it advantageous and economical to construct

large scale data centers consisting of thousands to hundreds of thousands of com-

puters. These computers provide compute and storage facilities for services that

are designed for high scalability, parallelization, and location transparency. Be-

cause of cost and port count limitations on a single switch, servers in data centers

networks are arranged in racks and rows that are logically arranged into a single

or multi-rooted hierarchical tree topology as illustrated in Figure 2.1 for scala-

bility and fault redundancy. The tree provides the abstraction of a single large

switch that interconnects all the servers. Each rack generally holds between 20-40

servers. As of 2010, all the servers in the rack are interconnected using a Top of

Rack (ToR) switch that enables non-blocking bandwidth at 1 Gbps between all

the servers. The ToRs themselves have 10Gbps uplinks that are connected to End

of Row (EoR) switches. The EoR switches serve to interconnect a set of server

racks. EoR switches are themselves interconnected to a set of Core switches. The

core switches are responsible for carrying traffic between all the rows as well as

traffic into and out of the data center.

Servers in a data centers can be classified into 3 types, Bare Metal, Virtu-

4

5

10 GigE link

1 GigE link
Core

Aggregation

Edge

Figure 2.1: Multi-rooted Hierarchical Tree topology.

alized, and Multi-tenant. For Bare Metal, each server is directly installed with a

single operating system that is configured for a particular service or application.

Example applications include search processing, web server, MapReduce, and dis-

tributed storage system. For a virtualized server, a single physical server is used to

host multiple virtual machines. Each virtual machine runs an installed operating

system which in turn hosts a server applications. Multiple virtual machines run-

ning on a single machine enables consolidation and higher utilization of physical

resources while still preserving fault isolation. A multi-tenant server is very simi-

lar to a virtualized server except that a physical server is hosting virtual machine

belonging to different customers.

In the last few years, cloud computing services such as Amazon EC2, Mi-

crosoft Azure, and Google AppEngine have taken traction as an appealing plat-

form to implement scalable, location transparent applications. Virtualization has

emerged as a key technology for constructing cloud computing services by enabling

the dynamic provisioning of services. A single physical server can be used to host

multiple independent instances of virtual machines. Virtual machine migration is

frequently used to dynamically adjust system load for cloud based services based

on user demand. When service demand is high, additional virtual machines can be

brought online and assigned to under utilized physical servers in order to increase

system scalability. Virtual machines on highly utilized physical servers may also

be migrated to less utilized and closer proximity machines to minimize network

6

latency and avoid network congestion. During off-peak hours, virtual machines

can also be deactivated and consolidated onto a smaller set of machines.

The massive number of physical hosts found in data centers along with the

hosting of cloud based services and virtual machines has created many challenges

for implementing large scale data center networks. For networks based on single

or multi-rooted hierarchical trees, aggregate bandwidth diminishes at each higher

level. For this reason, links at the aggregation and core layers of the data centers

tend to be typically oversubscribed between 1:5 and 1:20. As illustrated in VL2

[GJK+], data center traffic does not exhibit predictable patterns that would make

static provisioning practical. The use of virtual machines to dynamically provision

work among nodes in a data center can also lead to a fragmentation of services

among the racks and cancels out any attempt to localize services together. This

can lead to significant intra-rack traffic being exchanged that diminishes overall

aggregate network bisection bandwidth.

Multi-rooted tree networks provides hosts with multiple equivalent paths

to communicate and improve the potential for increased aggregate bandwidth.

However, the use of existing routing and forwarding protocols within data centers

limits the effectiveness of increased path parallelism. Legacy Layer 2 and layer

3 forwarding and routing protocols were designed for arbitrary topology network

environments that generally have little path parallelism. For layer 2 networks,

hosts on the network exist in a flat address space. This enables plug and plug con-

nectivity and allows for minimal administrative overhead. However, since there

is no TTL in the Ethernet header to prevent loops, the spanning tree protocol

is used to create a single path network and eliminates any path parallelism. For

large networks found in data centers, switches will also need to store significant

numbers of MAC entries in their forwarding tables. The problem is exacerbated

further when multiple virtual machines are deployed onto each physical machines.

Perhaps the biggest problem with deploying layer 2 networks within data centers is

its use of broadcast for control messages. For example, ARP performs host address

resolution using broadcast queries that are in turn flooded throughout the network

by all connected switches and bridges. In a data center environment, broadcast

7

traffic can amount to a considerable amount of bandwidth being consumed. One

attempt at mitigating broadcast is the use of VLANs within layer 2 networks.

Although the broadcast domain is constrainted, each VLAN still uses spanning

tree which results in only a single path. VLANs also fragment the network since

inter-VLAN traffic will require routing which in turn can lead to bandwidth bot-

tlenecks. Lastly, each switch that supports multiple VLANs must still store MAC

forwarding addresses for hosts in all VLANs. Considering that typical switches

can store between 16,000 to 32,000 MAC address entries, a multi-tenant data cen-

ter consisting of a few thousand physical machines running virtual machines can

quickly exceed the MAC address capacity on the switches. Since not every MAC

address can be stored in a switch, there will be significant broadcast traffic when

hosts ARP.

For layer 3 multi-rooted networks, Equal Cost Multipath (ECMP) is fre-

quently used to stripe flows across available paths in order to better exploit path

parallelsim. However, ECMP only statically assigns flows onto paths and does

not account for current network utilization or flow size. Static assignment of flows

can lead to collisions in the network which in turn leads to oversubscription and

lower aggregation bandwidth. In contrast to the plug and play nature of layer

2, layer 3 networks require a significant administrative overhead for assigning IP

addresses to hosts and configuring subnets for each router. A layer 3 network also

complicates the migration of virtual machines between end hosts. The reason for

the complication is that the IP address of the VM is tied to a particular subnet

and represent both the identifier and location. Moving a virtual machine between

subnets will cause existing network connections to the guest OS to be terminated.

No such complication occurs for layer 2 fabrics because of Ethernet’s flat address

space, however broadcast scalability and the lack of multipathing is a concern when

considering the large number of hosts in a data center.

Based on the shortcomings described for layer 2 and layer 3 data center

implementations, we describe the following principles that our system will follow

in order to realize an improved data center network fabric.

• Single logical view of the network: Currently in layer 3 based data

8

centers, routers using ECMP can only make static decisions for distributing

outbound traffic on parallel links. While ECMP offers improved network

bandwidth, congestion can still occur when traffic from different routers are

hashed onto the same path despite the existence of other free links. Ideally,

we would like to have a fabric where network traffic can be dynamically

placed onto links based on a single global view of the entire network instead

of a limited, local view. In addition, having a single logical view enables fast

fault recovery in the presence of link failures.

• Eliminating Link Oversubscription: Because of congestion at the ag-

gregation and core layers of the data center, over-subscription is frequently

employed. However, in order to maximize available bandwidth for demand-

ing applications such as MapReduce, we would like to realize a fabric where

oversubscription is not needed and that hosts are able to communicate with

each other at full interface speeds. Avoiding oversubscription also makes it

easier to exploit path redundancy for dynamically provisioning links. The

traditional hierarchical tree topology suffers from decreasing bandwidth the

higher traffic travels in the tree.

• Separation of Location and Identification: IP addresses describe both

the location and unique identifier for a host. However, seamless VM migra-

tion is complicated by the existence of different subnets. Services residing in

different subnets also leads to fragmentation of resources and the exchange

of significant inter-rack traffic. Although Ethernet’s flat addressing scheme

is friendly towards VM migration, its reliance on broadcast and spanning

tree limits its ability to scale for large size data centers. Because of this, we

would like a naming scheme in our fabric that separates identification from

location. Separating the two will enable our fabric to leverage the best of

both layer 2 and layer 3 and enable service agility within the fabric.

• Plug and Play: Because it enables minimal administration for configura-

tion, we would like our fabric to be based on layer 2 in order to facilitate

plug and play functionality when adding new hosts. We also prefer that no

9

modifications be made to the end hosts in order to simplify deployment. Al-

though Layer 3 subnets can be used to minimize forwarding state stored in

routers, there is a significant overhead in administering and maintaining this

information for a large size data center.

• High Scalability: Because of the large number of hosts (physical and vir-

tual), we would like to minimize the amount of forwarding state stored in

the switches. Large size TCAMs are costly and very power hungry. As al-

ready mentioned, Ethernet’s reliance on broadcasts makes it difficult to scale

to data centers. Ideally, our fabric eliminates the overhead associated with

broadcasts and minimizes the amount of state stored in the switches.

• Fault Tolerant: The system should gracefully degrade in the face of link

failures. As long as there is connectivity between sender and receiver, the fab-

ric should still be able to dynamically provision traffic based on the available

paths.

2.1 Fat Tree Networks

Recent work such as A Scalable Commodity Data Center [AFLV], DCell

[GWT+], Towards a Commodity Data Center, BCube [GLL+], & VL2 [GJK+]

have proposed alternate topologies for a scalable data center network. In this

thesis, we have constructed our data center network using a multi-staged fat tree

topology. Fat trees are a type of CLOS network and have the property of being

rearrangeably non-blocking. In a non-blocking CLOS switch network, there is a

dedicated path from an input port on an ingress switch to a certain output port

on an egress switch that doesn’t conflict with another path. A rearrangeably

non-blocking CLOS network differs from a non-blocking one in that establishing

a non-conflicting path between two hosts may require rearranging other existing

host-to-host paths. Because of its rearrangeably non-blocking property, multi-

staged fat tree networks enables all to all communication between end hosts and

eliminates the need for link oversubscription. The many paths available in a Fat

Tree also provides path redundancy from a fault tolerance standpoint. The Fat

10

Tree also represents a fundamental building block that can be replicated for scaling

out the network.

A three-stage fat tree built from k-port switches can support non-blocking

communication among k3/4 end hosts using 5k2/4 individual k-port switches. The

fat tree is composed of three types of switches, core, aggregation, and edge. The

fat tree itself is partitioned into pods. Each pod consists of aggregation and edge

switches that enable non-blocking communication between k2/4 hosts. The pod

represents a building increment block that can be added to a Fat Tree for scaling

out the fabric. Each core switch is connected to every pod. Figure 2.2 illustrates

a k=4 fat tree network that contains 20 switches interconnecting 16 end hosts. A

fat tree built from 48-port switches would consist of 48 pods and would support

27,648 hosts.

Core

Aggregation

Edge

Figure 2.2: K=4 Fat Tree that supports 16 hosts.

2.2 Multipathing

Multipathing is a routing technique that leverages the existence of multiple

alternate paths within a network for the purposes of improving fault tolerance

and overall increased bisection bandwidth. Layer 3 networks typically use shortest

path routing to forward packets between hosts. Although multiple paths may exist

between senders and receivers, multipath routing is typically not used in general

networks because of possible differences in MTU between routers and fluctuating

11

link latency which could lead to fragmentation, out of order packet delivery, and

packet retransmissions. In contrast, because data center networks are characterized

by a fixed topology exhibiting multiple equivalent weight paths between hosts

for redundancy and scalability, multipathing can dramatically increase the overall

bisection bandwidth of the network.

2.2.1 Equal Cost Multipath

One popular routing method for exploiting the parallelism in the network is

Equal Cost Multipath Routing (ECMP) [cis]. ECMP is a per-hop routing decision

made by the router to load balance a packet onto one of many equal weight paths

to a destination. In order to avoid the problem of out of order packet delivery,

ECMP is typically implemented by hashing the tuples of a packet header so that

packets are bucketed by flows. Each flow is then deterministically placed onto

one of many multiple paths. This technique guarantees that packets within a flow

arrive in order.

Local

Collision

Downstream

Collision

Core 0 Core 1 Core 2 Core 3

Agg 0

Flow A

Flow B

Flow C

Flow D

Agg 1 Agg 2

Figure 2.3: Example of ECMP collisions.

Because ECMP statically hashes flows to an egress port, it is possible for

flows from different sources to intersect at a downstream router despite the exis-

tence of alternate collision free paths. In Figure 2.3, Flows A and B hash to the

same aggregation switch, Agg0. Despite the existence of other free paths to their

destinations, flows A and B are capped by the outbound link capacity to Core0

from Agg0 and will only transmit at half of their available interface bandwidth.

Flow C and D demonstrate a case where downstream ECMP hashing results in a

flow collision that was not visible from the perspective of the initial edge switches.

12

Flows C and D converge onto Core 2 which results in half the available interface

bandwidth being transmitted by the senders. In all cases, full interface transmit

bandwidth from the sending hosts could have been used if the flows were placed

onto non-colliding paths.

2.2.2 Valiant Load Balancing

Another multipath routing method is Valiant Load Balancing (VLB) [GJK+].

In VLB, packets are randomly assigned to one of many equal weight paths between

sender and receiver. The random selection of paths ensures that packets are uni-

formly spread among the equivalent links. However, to avoid out of order packet

delivery that would complicate protocols such as TCP, VLB can also be imple-

mented by randomly placing flows instead of individual packets on to equivalent

links.

Sections of this chapter are an adaption of the material that appears in

“PortLand: A Scalable, Fault-Tolerant Layer 2 Data Center Network Fabric”.

Niranjan Mysore, Radhika; Pamboris, Andreas; Farrington, Nathan Farrington;

Huang, Nelson; Miri, Pardis; Radhakrishnan, Sivasankar; Subramanya, Vikram;

Vahdat, Amin. In Proceedings of ACM SIGCOMM 2009. Sections of this chap-

ter are also adapted from the material that appears in “Hedera: Dynamic Flow

Scheduling for Data Center Networks”. Mohammad Al-Fares, Mohammad; Rad-

hakrishnan, Sivasankar; Raghavan, Barath; Huang, Nelson; Vahdat, Amin. In

Proceedings of NSDI 2010. The thesis author was a co-author of the listed pa-

pers.

Chapter 3

Related work

In the past few years, there has been a significant number of papers and

work in the data center network space. In SEATTLE [KCR], the authors proposes

a scalable layer 2 fabric for general network topologies without the overhead of

broadcast. Switches in SEATTLE use a link-state protocol to learn about the

topology and and form a DHT that is used for storing MAC/IP lookup information.

Like this thesis, SEATTLE enables a fabric that is conducive to low administration

and host mobility while avoiding the overhead associated with layer 2 broadcast

protocols. However, SEATTLE does not consider multipathing.

Trill [PED+09] and its implementation, RBridges, is a IETF protocol that

enables a link state based routing protocol to be used at layer 2. Once connected,

an RBridge learns all the hosts that are directly connected to it. RBridges in turn

are interconnected with other RBridges and discover each other using a link state

protocol. Layer 2 packets are encapsulated with a Trill Header that allows for

shortest path packet routing. Because the Trill header features a TTL field, there

is no need to prune links using Spanning Tree protocol within a RBridge network.

Since equivalent shortest paths are not pruned, Trill can use ECMP based hashing

techniques to multipath packets in order to increase aggregate bandwidth.

In DCell [GWT+], the authors propose a specialized network structure for

building a scalable data center fabric that provides fault tolerance and high band-

width capacity. The DCell is a recursively defined network building block consist-

ing of a set of servers interconnected with a low end switch. By connecting each

13

14

server in a DCell to a different server in a different DCell, a fully connected DCell

graph can be constructed. This structure in turn can be recursively repeated to

construct larger networks of DCells while still exhibiting fault tolerance and path

parallelism. However, because of it’s unique structure, DCell requires new routing

and broadcast protocols to be used. Like this thesis, DCell explores the use of

a basic network building block for building a scalable network fabric, however it

does not venture into techniques for exploiting the path parallelism found in the

network.

In A Scalable Commodity Data Center Switch [AFLV], the authors pro-

posed the use of a Fat tree based topology for enabling non-blocking communi-

cation between end hosts using commoditized switches. Our work in this thesis

leverages the topology proposed in the paper and builds on its foundation.

In Monsoon [GLM+], the authors propose a data center fabric where servers

and their corresponding load balancers are interconnected using a layer-2 mesh

topology. To realize a large scale, multipathed layer-2 fabric between servers, Mon-

soon utilizes host based valiant load balancing, a centralized MAC/IP directory,

and layer-2 encapsulation features found in commodity switches.

In VL2, the authors describe their implementation for a data center fabric

that is implemented using a CLOS network. Like this thesis, VL2 provides the

abstraction of a single large network switch and implements a naming scheme for

hosts that decouples the location from the identifier. Each hosts IP address is

mapped to a location based address determined by its network edge router. By us-

ing this technique, seamless virtual machine migration is possible since the packet

forwarding network is a single subnet that is decoupled from the hosts IP ad-

dress identifier. A CLOS network interconnects the aggregation and core switches.

Flows are uniformly spread across aggregation and core links using Valiant Load

Balancing (VLB). To avoid ARP broadcasts, a end host network shim layer is

introduced which forwards ARP requests to a centralized ARP directory that is

replicated for redunancy and efficiency.

In Moose [SMC], the authors propose an hierarchical naming scheme that

enables scalability in Ethernet networks. Like this thesis, Moose uses the idea of

15

separating identification from location for a hosts address. In Moose, each hosts

MAC address just serves as an identifier. Host packets are intercepted by the

ingress Moose switch and are rewritten to use a location specific MAC address.

Because the location specific mac address is a hierarchical naming scheme, shortest

path routing and multipathing can be applied. Moose also requires a centralized

directory for handling ARP requests intercepted at the Moose switch.

Ethane [CFP+] proposes a fabric where a centralized controller is used to

simplify the application of network policy to all connected switches. Switches in

the Ethane fabric expose a programmatic, flow based interface that a centralized

controller can use for applying policy. Packets that don’t match flow entries at

the switch level are forwarded to the centralized controller for classification. The

central controller is omniscient and enables the fabric to be treated as a single

logical unit for the purposes of applying policy. Other papers that explore the use

of a centralized fabric manager for applying policy or enforcing routing include

4D [GHM+], Tessaract [YMN+], and RCP [CCF+]. In addition, works such as the

Google File System [GGL] and MapReduce [DG] also demonstrate that centralized

managers are feasible and scalable for large scale systems.

Sections of this chapter are an adaption of the material that appears in

“PortLand: A Scalable, Fault-Tolerant Layer 2 Data Center Network Fabric”.

Niranjan Mysore, Radhika; Pamboris, Andreas; Farrington, Nathan Farrington;

Huang, Nelson; Miri, Pardis; Radhakrishnan, Sivasankar; Subramanya, Vikram;

Vahdat, Amin. In Proceedings of ACM SIGCOMM 2009. The thesis author was

a co-author of the listed paper.

Chapter 4

Design

In this section, we describe the design for the managed network fabric that

addresses the goals described earlier. Our design builds on the work previously

performed in PortLand[MPF+], and Hedera [AFRR+]. In conjunction with a Fat

Tree network and a centralized fabric manager, we strive for a fabric where dy-

namically changing end host traffic can be load balanced onto multiple redundant

paths while maximizing aggregate bandwidth in a fault tolerant manner.

4.1 Single Logical View

The key benefit of being able to treat the network fabric as a single logical

unit is that resource allocation can be made based on a global picture. As already

mentioned, switches and routers currently make packet forwarding decision based

on a local view that is unaware of downstream conditions. In the case of flow

placement, a global view of the fabric links can be leveraged to avoid the ECMP

collisions described earlier in Figure 2.3. To realize a single logical view of the

network, we use a centralized fabric manager that is connected to all the switches.

Because the fabric manager can receive local switch link state information, it is

able to maintain a global view of the network and can push applicable forwarding

updates back to all the switches. Internally, the fabric manager maintains a matrix

that describes the graph of the network and the corresponding state of each link

in the network. Switches report local link failures to the fabric manager which in

16

17

turn updates other connected switches. All switches maintain a local copy of the

entire network. By collecting and analyzing individual flow statistics from each

switch, the fabric manager can determine which links or paths are heavily utilized

and can push flow path updates to the switches to direct traffic onto alternate

paths.

In our system, we utilize and extend the primitives provided by OpenFlow

[MAB+] to realize a single logical network fabric. All switches in the fabric are

connected to the central OpenFlow controller. We extended the reference Open-

Flow controller to function as our fabric manager. In addition to its normal role

of pushing flow classification policy to the switches, the central controller has been

extended to also provide ARP resolution, fault tolerance, and flow scheduling for

dynamically directing traffic onto available paths.

4.2 Eliminating Link Oversubscription

To eliminate oversubscription, three approaches are used. The first is the

use of the fat tree topology that enables rearrangeably non-blocking communication

between end hosts. Rearrangeably non-blocking communication enables an end

host to communicate at its full interface speed with another host since there will

always be some path in the network that doesn’t collide with other existing traffic.

However, to achieve full bisection bandwidth between hosts, it may be necessary

to rearrange traffic paths.

Our second approach is to exploit the link parallelism found in the network.

Although our fabric is layer 2, the absence of the spanning tree protocol and the

use of our forwarding rules enables all paths to be used. For our system, our unit

of communication is a network flow. All flows initially are load balanced among

the available outbound links using a static ECMP algorithm. ECMP is ideal for

small, short-lived flows typical of RPC requests. However, as described earlier,

static ECMP hashing is inadequate for all traffic communication patterns.

For large size flows that can lead to network congestion and diminished

bisection bandwidth, we employ the third approach of using a dynamic flow sched-

18

uler. Through the use of the central fabric manager, we leverage the rearrangeably

non-blocking property of the fabric by dynamically shifting network flows among

the available paths based on the latest link state in the network. The key compo-

nent within the fabric manager for dynamically provisioning network flows is the

Hedera Flow Scheduler.

4.2.1 Hedera Flow Scheduler

This section describes the Hedera Flow Scheduler at a high level. Full details

can be found in [AFRR+]. The basic unit of scheduling is a flow. Flows are packets

that share the same 10-tuple values of <source MAC, destination MAC, source IP,

destination IP, EtherType, IP Protocol, TCP source port, TCP destination port,

VLAN, input port>. Table 5.1 summarizes the contents of a flow. There are

two types of flow categories: network-limited and host-limited. A Network-limited

flow will use all bandwidth available along its assigned path and as such is limited

by the amount of congestion in the network. A host-limit flow is limited by the

”slower” of the source and destination hosts. For our system, the Hedera Flow

Scheduler adopts a network-limited flow model.

The basic motivation for the scheduler is that large flows are more likely

to lead to packet collisions in the network. To overcome this problem, the sched-

uler seeks to dynamically provision large flows among the multiple paths available

between a source and destination host. Initially, all new flows are treated as mice

flows by the switches. Mice flows are forwarded deterministically by the switches

based on a ECMP style hash created from the flows 10-tuple. However, once a

flow grows past a threshold size, it is classified as a large flow and processed by the

Hedera Flow Scheduler. Currently, the threshold is 10% of each hosts 1GigE link.

As illustrated in Figure 4.1, the flow scheduler performs the following steps.

Edge switches detect large flows. Once a large flow is identified, the scheduler esti-

mates the demand of each identified large flow and applies a placement algorithm

for determining which path to assign to a particular large flow. Once the paths

are computed, the central fabric manager installs the paths by applying flow entry

updates to all the applicable switches using OpenFlow messages.

19

1. Detect
Large Flows

2. Estimate Flow
Demands 3. Schedule Flows

Figure 4.1: Hedera Scheduler Architecture

The input for the demand estimator is the set F of source and destination

pairs for all active elephant flows. Internally, the demand estimator maintains a N x

N where N is the number of hosts. For each matrix element (i,j), 3 values are stored:

(1) the number of flows from host i to host j, (2) the estimated demand of each of the

flows from host i to host j, and (3) a flag to indicate whether the flows between host

i and host j have converged. The demand estimator performs repeated iterations

of increasing the flow capacities from the sources and decreasing exceeded capacity

at the receivers until the flow capacities converge. The total amount of flows sent

to a receiver cannot exceed its consumption capacity. Eventually all the flows will

converge. Figure 4.2 illustrates the convergence of an example demand matrix. In

this example, there are 4 hosts (H0, H1, H2, and H3). H0 sends 1 flow each to H1,

H2, and H3. H1 sends 2 flows to H0 and 1 flow to H2. H2 sends 1 flow to H0 and

H3. H3 sends 2 flows to H1.

266664
(1
3
)1 (1

3
)1 (1

3
)1

(1
3
)2 (1

3
)1 00

(1
2
)1 00 (1

2
)1

00 (1
2
)2 00

377775⇒
266664

[1
3
]1 (1

3
)1 (1

3
)1

[1
3
]2 (1

3
)1 00

[1
3
]1 00 (1

2
)1

00 [1
3
]2 00

377775⇒
266664

[1
3
]1 (1

3
)1 (1

3
)1

[1
3
]2 (1

3
)1 00

[1
3
]1 00 (2

3
)1

00 [1
3
]2 00

377775⇒
266664

[1
3
]1 (1

3
)1 [1

3
]1

[1
3
]2 (1

3
)1 00

[1
3
]1 00 [2

3
]1

00 [1
3
]2 00

377775
Figure 4: An example of estimating demands in a network of 4 hosts. Each matrix element denotes demand per flow. Subscripts
denote the number of flows from that source (rows) to destination (columns). Entries in parentheses are yet to converge. Grayed
out entries in square brackets have converged.

The input to the demand estimator is the source and desti-
nation pairs for all active flows. The estimator maintains an
N × N matrix M ; N is the number of hosts. The element
in the ith row, jth column contains 3 values: (1) the num-
ber of flows from host i to host j, (2) the demand of each of
the flows from host i to host j, and (3) a “converged” flag
that can be either true or false to mark flows whose demands
appear to have converged.

The pseudocode for the demand estimator is shown in Fig-
ure 3. The demand estimator performs repeated iterations of
increasing the flow capacities from the sources and decreas-
ing exceeded capacity at the receivers until the flow capaci-
ties converge. In each iteration of decreasing flow capacities
at the receivers, multiple flows reach convergence.

The process of estimating the demands is shown in Fig-
ure 4 through an example. Consider 4 hosts (H0, H1, H2

and H3) connected by a non-blocking topology. Suppose
H0 sends 1 flow each to H1, H2 and H3; H1 sends 2 flows
to H0 and 1 flow to H2; H2 sends 1 flow each to H0 and
H3; and H3 sends 2 flows to H1. The figure shows the itera-
tions of the demand estimator. The matrices indicate the flow
demands during successive stages of the algorithm starting
with an increase in flow capacity from the sender followed
by a decrease in flow capacity at the receiver and so on. The
last matrix indicates the final demands of the flows.

For real communication patterns, the demand matrix for
currently active flows is a sparse matrix since most hosts will
be communicating with a small subset of remote hosts at a
time. In this case, sparse matrix data structures can be used
to improve the performance and memory footprint of the al-
gorithm. The demand estimator is largely parallelizable, fa-
cilitating scalability.

4.3 Global First Fit
In a multi-rooted tree topology, there are several possible

equal-cost paths between any pair of source and destination
hosts. When the scheduler detects a new large flow (10% of
the host’s link capacity), it linearly searches all these possi-
ble paths to find one whose link components can all accom-
modate that flow. If one such path is found, then that flow is
“placed” on that path: First, a capacity reservation is made
for that flow on these links. Second, its newly chosen path is
advertised to its edge and aggregation switches. To do this,
the scheduler maintains the reserved link capacity on every

link in the network and uses that information to determine
which paths are available to carry new flows. The reserva-
tions are cleared when the flow expires.

Note that this corresponds to a first fit algorithm; a flow
is greedily assigned the first path that can accommodate
it. When the network is lightly loaded, finding such a path
among the many possible paths is likely to be easy; however,
as the network load increases and links become saturated,
this choice becomes slightly harder. Global First Fit does
not guarantee that all flows will be accommodated, but this
algorithm performs relatively well as shown in Section 6.
We show the pseudocode for Global First Fit in Figure 5.

4.4 Simulated Annealing
Next we describe an algorithm, Simulated Annealing,

that performs a probabilistic search to efficiently compute
paths for flows. Our technique assigns a single core switch
for each destination host. Simulated Annealing forwards
all flows destined to a particular host A to the designated
core switch for host A. When multiple hosts send flows to a
single destination host and the sum of their demands is more
than the end link capacity, some packets have to be dropped
since the end link to the destination host has limited capac-
ity. Designating a core for a host allows these “dead” packets
to be dropped closer to the sources. Here we assign the core
switches for groups of flows destined to the same host. This
is in contrast to assigning a core switch individually to each
flow. We use a simulated annealing-based algorithm to find
the flow placements.

The input to the algorithm is the set of all large flows to
be placed and the flow demands as estimated by the pre-
vious algorithm. Simulated Annealing searches through a
solution state space to find a near-optimal solution. An en-
ergy function E defines the energy in the current state. In
each iteration, we move to a neighboring state with a certain
probability P . The acceptance probability P depends on the
energies in the current and neighboring states and the cur-
rent temperature T . The temperature is decreased with each
iteration of the Simulated Annealing algorithm and we stop
iterating when the temperature is zero. Allowing the solution
to move to a state with a higher energy allows us to avoid lo-
cal minima. Figure 6 shows The pseudocode for Simulated
Annealing.

We now define the functions required for Simulated An-

5

Figure 4.2: Demand Estimation Example

The scheduler aims to assign flows to non-conflicting paths. In addition, the

scheduler also tries to place multiple flows on a link that cannot accommodate the

combined bandwidth demands. Depending on the path chosen by the scheduler,

the fabric manager will apply flow entries into the edge and aggregation switches

of the source pod for that flow. The forwarding entries serve to direct the flow on

to its new chosen path. Once a large flow ends, the flow entries applied by the

fabric manager will expire after a timeout period.

Two placement algorithms, Global First Fit and Simulated Annealing are

supported. In Global First Fit, the scheduler searches linearly through all possible

20

paths that can accommodate the identified large flow. The algorithm will greedily

place the flow on the first path found that can accommodate it. Once placed, a

flow will be not be reassigned and will not be removed until the flow ends and the

flow entries time out. Global First Fit does not guarantee that all flows can be

accommodated. For it’s simplicity, First Fit performs relatively well.

The second algorithm, Simulated Annealing (SA), performs a probabilistic

search to compute the paths for a flow. SA searches through the solution state

space to find a near optimal solution. In contrast to Global First Fit, the SA algo-

rithm will reassign large flows based on the current state of the network. An energy

function E defines the energy in the current state. For each iteration, we move

to a neighboring state with a certain acceptance probability P, depending on the

energies in the current and neighboring state. In each iteration, the temperature

T is decreased. When the temperature is zero, the algorithm stops iterating. To

simplify the problem space, all flows with the same destination host are assigned

the same core switch.

The Hedera Scheduler works complementary to the static nature of ECMP.

Since not all network traffic consists of large flows, ECMP is simple, fast, and

sufficient for handling small, short-lived flows such as request/response RPC style

traffic. However, in the presence of large flows, the Hedera Scheduler can ad-

dress the short-comings of ECMP and dynamically provision the traffic to avoid

downstream collisions that would lower bisection bandwidth for the fabric.

4.3 Separation of Location and Identification

In layer 3 networks, IP addresses uniquely identify a end host and describe

its location based on the subnet mask. This property hampers service agility that

is frequently seen in virtual machine migration. Because of the dual purpose role of

the IP address, VM migration becomes complicated when moving between different

subnets. Ethernet’s flat address naming scheme makes migration straightforward,

however its reliance on broadcast prevents it from scaling adequately to data cen-

ters. To provide the illusion of a single, scalable, flat address space, our system

21

implements PortLands naming system for hosts that decouples location from its

identification.

4.3.1 PortLand Naming Scheme

In our system, hierachical Pseudo MAC addresses (PMAC) are assigned to

each edge switch host facing interface. The PMAC encodes the location of the end

host in the topology. All hosts in the same pod share the same PMAC prefix. The

end host interfaces are not modified and maintain their original MAC address. The

IP address assigned to an end host simply serves as a unique identifier and is not

used to encode its location. All forwarding between switches in the fabric is based

on PMACs. Instead of maintaining forwarding state for every host in the network,

switches can maintain forwarding entries based on the prefix for each pod. This

minimizes the amount of state stored on the switch. When a host ARPs for a

destination end host, the ARP request is intercepted by the ingress switch. The

ingress switch maintains a local cache containing IP / PMAC mappings. Egress

switches perform MAC rewriting on the outbound packet so that destination MAC

of the intended recipient is used. Using this scheme, our fabric provides the illusion

of a large Ethernet fabric to the end host.

Fabric

Manager

10.5.1.2

00:19:B9:FA:88:E2

PMACIP
00:00:01:02:00:0110.5.1.2

1

2b

2a

3

AMACIP
00:19:B9:FA:88:E210.5.1.2

PMAC
00:00:01:02:00:01

Figure 4.3: Actual MAC to Pseudo MAC Mapping.

22

The PMAC naming convention is defined as a 48-bit address of the following

form pod.position.port.vmid. The pod (16 bits) identifies the pod that the host is

located in. The position (8 bits) identifies the hosts position in the pod. The port

(8 bits) matches the port number on the switch that the host is directly attached

to. Lastly, vmid (16 bits) is an identifier that can be used to uniquely identify

a virtual machine that is multiplexed on a single physical machine. Figure 4.3

describes an example. In the example, host 10.5.1.2 has an actual MAC (AMAC)

address of 00:19:B9:FA:88:E2. However, all packets sent by 10.5.1.2 will have its

source MAC address overwritten with its corresponding PMAC that describes its

location in the network. In the example, the PMAC of 00:00:01:02:00:01 encodes

10.5.1.2 location as Pod 1, switch 2, switch port 0, and machine ID 1.

The benefit of this approach is that IP addresses only serve as a unique

identifier for an end host. The end hosts location is identified by its corresponding

PMAC address. From a host perspective, the entire fabric is treated as single flat

address space. The flat address space enables virtual machine migration to be

seamless and not hindered by subnet boundaries.

4.4 Plug and Play

One of the key benefits of a flat address network such as Ethernet is that

it requires minimal administration. As Layer 3 networks become larger, adminis-

trative overhead from configuring routing forwarding tables and interface subnets

becomes quite significant. As already described, layer 2 networks are difficult to

scale to large networks such as those found in data centers because of its reliance

on broadcast and the presence of large amounts of forwarding state in the switches.

By utilizing the PortLand Naming scheme, our system maintains the ease of config-

uration found in layer 2 networks. When an ingress edge switch observes a source

MAC that it has never seen before, it creates an ARP cache entry consisting of a

PMAC, MAC, and IP mapping entry. This entry is consulted for ARP requests

originating from the end hosts. The central fabric manager is also updated with

this directory entry. To support end host mobility, ARP cache entries can be

23

expired after a period of time.

4.5 High Scalability

One of the challenges with implementing a fabric for a data center is making

it scale to support the large number of connected physical and virtual hosts. One

key challenge that must be minimized is the need for broadcast or flooding. In the

case of Layer-2 and as described in Seattle[KCR], ARP broadcasts can introduce

significant overhead. Another key scaling challenge is minimizing the amount of

state stored in the switch. Considering that an environment hosts could number in

the hundreds of thousands of hosts and that switches typically store between 16,000

to 32,000 forwarding entries, it becomes apparent that existing layer 2 fabrics will

have difficulty to support such mega sized data centers.

4.5.1 PortLand ARP Handling

As mentioned before, Ethernet relies on broadcasting for ARP requests.

Given the large number of hosts in a data center, broadcasts introduce a significant

overhead. Figure 4.4 illustrates an example of how ARP is handled by the system.

In Step 1, the ingress switch intercepts the ARP requests and forwards the packet

to the software layer of the switch. Each ingress switch maintains a local IP-

PMAC lookup table and returns the PMAC if a matching entry for the requested

IP address is found. In Step 2, if the local switch cache doesn’t contain a matching

entry, the ARP request is forwarded to the central fabric manager which maintains

a global directory. Step 3 occurs if the central fabric manager matches a incoming

ARP request and returns a PMAC response back to the original ingress switch.

If the global directory in the fabric manager fails to resolve the ARP request, the

ARP request is transmitted to a randomly selected core switch. The core switch

then forwards the ARP request to all of its connected destination pods. Our system

minimizes broadcast and flooding by leveraging the fabric manager for resolving

ARP requests.

24

Mask

Fabric

Manager

PMACIP

Address 10.2.4.5

00:19:B9:F8:E9:B4

HWType HWAddress IFace

00:02:00:02:00:0110.2.4.5 ether eth1

00
:02
:00
:02
:00
:01

00
:00
:01
:02
:00
:01

08
00

45

2

1

4

5

3

00:00:01:02:00:0110.5.1.2

00:02:00:02:00:0110.2.4.5

Figure 4.4: ARP Handling

4.5.2 PortLand Forwarding

As already described, one of the scaling challenges with implementing a

layer 2 fabric for a data center is coping with the large amounts of forwarding

state that would need to be stored in switches for the large numbers of hosts.

IP routing introduces a naming hierarchy that can reduce state, however, it also

fragments the address space and complicates the delivery of agile services. As

described above, this thesis utilizes the PMAC scheme to provide a separation of

identification and location for end host. All forwarding entries make use of PMACs

as opposed to IP based prefix / suffixes. Because the PMAC encodes location, we

can program forwarding entries using the OpenFlow protocol that are hierarchical

in nature.

To eliminate loops, we program the forwarding entries based on a set of

rules. Packets will always be forwarded up to either an aggregation or core switch

then down towards their ultimate destination. To prevent loops and broadcast

storms, we ensure that once a packet begins to travel downwards towards an end

host, it cannot be directed upwards anymore.

25

4.6 Fault Tolerant

Each switch stores a local graph representation of the entire network. Each

edge represents the state of a network link between a switch. Keep-alive packets

are transmitted out each switch interface on a periodic basis. If a link failure is

detected, a topology update message is transmitted to the fabric manager. The

fabric manager in turn will update its view of the network and unicast a topology

update to all connected switches. Upon receiving a fault update, each switch will

recalculate the shortest path to destination hosts and update its flow entries.

Fabric

Manager

Fault Matrix

In Port VLAN

00:02:00:02:00:010 FFFF 0800

N/W Dst N/W Src ...

...- -

Out Port

2

3

4

2

1

Dst MAC

00:00:01:02:00:01

Src MAC Type

Figure 4.5: Fault Detection

Figure 4.5 illustrates the fault detection mechanism. In step 1, a link has

failed between a core and aggregation switch. In step 2, the core switch keep-alive

timer has expired. The core switch then updates its own local graph of the network

and transmits a link status update to the fabric manager. The Fabric Manager

in step 3 updates it’s global fault matrix for the affected link and transmits an

update to all the switches in step 4 over the control plane.

Sections 4.3, 4.5.1, 4.5.2, and 4.6 in this chapter are adapted from material

that appears in “PortLand: A Scalable, Fault-Tolerant Layer 2 Data Center Net-

work Fabric”. Niranjan Mysore, Radhika; Pamboris, Andreas; Farrington, Nathan

Farrington; Huang, Nelson; Miri, Pardis; Radhakrishnan, Sivasankar; Subramanya,

Vikram; Vahdat, Amin. In Proceedings of ACM SIGCOMM 2009. Section 4.2.1 of

this chapter is also adapted from the material that appears in “Hedera: Dynamic

26

Flow Scheduling for Data Center Networks”. Mohammad Al-Fares, Mohammad;

Radhakrishnan, Sivasankar; Raghavan, Barath; Huang, Nelson; Vahdat, Amin. In

Proceedings of NSDI 2010. The thesis author was a co-author for both papers.

Chapter 5

Implementation

For our implementation, we constructed a small scale data center using 1U

rack based computers to test our design. Our data center (Appendix A.1) consists

of a data plane that is implemented using a fat tree network and a control plane

network that is implemented using a standard, commercial, 48-port switch. A

dedicated gateway machine serves to isolate traffic within our experimental data

plane network from the rest of the campus network traffic. All end hosts and data

plane switches are connected to the control plane. We implemented our managed

network fabric by leveraging and extending the primitives provided by OpenFlow.

5.1 OpenFlow

This section describes OpenFlow and the functionality that it provides. The

OpenFlow protocol [MAB+] defines an interface by which flow entries in switches

can be programmed from a centralized controller. As illustrated in Figure 5.1, the

primary components of OpenFlow include the hardware flow table, secure channel,

and a centralized controller. The Flow Table is a hardware module that contains

a set of flow entries. Each Openflow flow entry specifies a criteria for matching

a network packet and consists of the ten-tuple as described in Table 5.1. The

OpenFlow datapath is simply the path a packet can travel from the hardware flow

table, secure channel, and controller.

Each entry can be associated with a set of actions such as forwarding the

27

28

OpenFlow Switch

Flow Table

Flow Entry #1

Flow Entry #2

Flow Entry ...

Flow Entry

Src MAC Address

Dest MAC Address

Src IP Address

Dest IP Address

Ethernet Type

IP Protocol

TCP Src Port

TCP Dst Port

VLAN

Input Port

Controller

Secure
Channel

(secchan)

Figure 5.1: OpenFlow Architecture

Table 5.1: OpenFlow Flow Entry

Src

MAC

Dest

MAC

Src

IP

Dst

IP

Ether

Type
IP Protocol

TCP /

UDP Src

Port

TCP /

UDP Dst

Port

VLAN
Input

Port

packet out of a specific port, modify a packet field, or drop a packet. Because

the flow entry is implemented in hardware, line rate forwarding is possible. For

packets that fail to match an existing flow entry, an exception event is generated

on the switch and the packet is forwarded to the controller on the control plane

using Secure Channel (secchan). Secchan acts as a software packet relay between

the underlying hardware flow table and the controller. The controller is a server

process that can run on any standard PC and is used to classify incoming packets

and apply policy updates back to the switches. According to its specification,

OpenFlow switches must at the minimum support the following operations.

• Forward a flows packets to one or more ports.

• Encapsulate and forward a flows packet to a controller.

• Drop a flows packet.

• Forward a flows packet through a switch’s network stack.

29

The protocol supports three message types. Controller-to-switch messages

are initiated by the controller to directly manage or inspect the state of a switch.

Asynchronous messages are initiated by the switch and are used to raise network

or switch state events to the controller. Symmetric messages are initiated by

either the switch or controller and are typically used for request / response type

interactions between the switch and controller. For our project, we made extensive

modifications to the OpenFlow primitives to implement our managed network

fabric.

5.2 Constructing a Data Center

5.2.1 Dataplane

For our network data plane, we constructed a 3 tier, K=4 fat tree network

as illustrated in Figure 5.2. The data plane consists of 4 pods interconnecting 16

hosts. All the pods are interconnected using 4 core switches. Each pod consists

of 2 edge and 2 aggregation switches providing non-blocking traffic to 4 end hosts.

Each switch is implemented using a NetFPGA PCI card [LMW+]. The NetFPGA

card contains 4 1GigE network ports and a Xilinx FPGA that can be programmed

with custom hardware extensions. Each NetFPGA is installed in a 1U Dell Dual-

Core Xeon computer running Red Hat Linux Kernel Version 2.6.18-92.1.18.el5 and

the Openflow control plane software.

Each NetFPGA is programmed to act as a flow table based OpenFlow

switch that can forward packets at line rate. Flow entries are stored in either the

NetFPGAs 32-entry TCAM for wild card packet matches or 32KB of SRAM for

exact packet matches. The kernel module for the NetFPGA provides a software

interface to the underlying hardware for creating, editing, and removing flow table

entries. Packets that don’t match any of the hardware flow entry tables are raised

as software exceptions and forwarded to the NetFPGA kernel module. The kernel

module in turn forwards the packet exception to the secchan user process which

in turn encapsulates the packet to the controller running in the control plane for

processing.

30

Two key features were missing in the version of OpenFlow that we used

for our implementation. The first missing feature was hardware support for MAC

rewriting that would be used for mapping AMACs to PMACs as described in the

previous design section, PortLand Naming Scheme. As a workaround, we modified

each end host’s data plane network interface so that it used a PMAC based on the

end host’s location in the network. The second missing feature was device driver

support for programming wild cards in the source and destination MAC address

flow entry fields. Prefix and suffix wild carding are currently only supported for

IP address fields. As a compromise, we preprogrammed the default forwarding

entries on each switch with a full PMAC forwarding entry as opposed to a wild

card version originally envisioned in the design.

Pod 2Pod 0 Pod 1 Pod 3

10.4.0.1 10.4.0.410.4.0.2 10.4.0.3

10.0.2.1

10.0.1.1

10.0.1.2 10.2.0.310.2.0.2

Edge

Aggregation

Core
48-port GigE

Switch

OpenFlow

Controller

Flow

Scheduler

Figure 5.2: Data Center Data Plane

5.2.2 Control Plane

All switches and end hosts are connected to a Quanta 48-port 1 GigE switch

to form a private 192.168.1.x control plane network as illustrated in Figure 5.3.

A gateway server providing NAT, DHCP, and NFS services insulates our experi-

mental network traffic from the rest of the campus and serves as an administrative

hub and staging point for pushing software updates to our data center. A dedi-

cated quad-core server is used for hosting OpenFlow controller processes. Because

the Quanta 48-port switch enables optimal non-blocking communication between

31

connected hosts, the control plane is also used as a baseline to compare the effec-

tiveness of our flow scheduling techniques.

Netfpga SwitchesEndhosts

Gateway / NAT / NFS
Share for private network

Control Plane 48-port
1GigE Switch

Control Plane 192.168.1.x
Network

Experimental Dataplane
Network

10.x.x.x network

Fabric Manager

Campus Network

Figure 5.3: Data Center Control Plane

5.2.3 Hosts

As in actual data centers, all of our end hosts are 1U Quad-Core Intel

Xenon mounted in racks similar to Figure A.1. A small number of end hosts

were constructed using low cost commercial parts purchased over the Internet and

exemplify a minimal, commoditized end host running in the giant data centers

of Yahoo, Google, and Microsoft. Table 5.2 tallies the list of components and

the total cost to build a low end server. All the 1U end hosts feature dual 1

GigE NIC interfaces. One interface is connected to the data plane network while

the other one is connected to the control plane network. Each host runs the

Linux operating system and mounts the NFS drive located on the NAT/Gateway

machine. The shared NFS drive provides a convenient mechanism for pushing

32

software updates to all the end hosts in a quick manner. End hosts are used for

running the benchmarking software that we used to evaluate our managed network

fabric as well as Hadoop, the parallel processing service.

Table 5.2: End Host Components 2008 Prices

1. Intel Pentium E2220 Allendale 2.4 Ghz Dual Core Processor $89.99

2. Seagate 80 GB 2.5” 7200 RPM Hard Drive $59.99

3. Supermicro 1U Case with Power Supply $109.99

4. Supermicro PDSBM-LN2+-O Intel Server motherboard $139.88

5. Corsair 2 GB RAM $54.49

Total Cost $454.45

5.3 Managed Network Fabric

This section describes the implementation for the managed network fabric.

The reference OpenFlow code base that we used as our foundation implements a

learning switch. Packets that fail to match a hardware forwarding flow entry are

raised as exceptions to secchan. Secchan serves as a relay between the underly-

ing NetFPGA kernel module and the central controller. The Central Controller

implements the learning switch functionality and pushes layer 2 forwarding rules

back to the switch. Both secchan and the controller are implemented using a single

threaded event based model. From a data path standpoint, both secchan and the

controller provide hooks for handling packet-in and packet-out events between the

boundaries of each component. To implement our managed network fabric, we

extended the primitives and functionality provided by the reference OpenFlow im-

plementation by customizing the packet handling datapath and adding additional

modules to support our special handling of certain incoming packets. Figure 5.4

describes the modules we added to each OpenFlow components.

To minimize the integration effort between the existing code base, most

of our modules were implemented using a queue based interface as illustrated in

Figure 5.6 and Figure 5.8. The use of queues such as the transmit queue found in

33

both secchan and the controller/fabric mananger helped decouple our code from the

stock Openflow codebase and served to serialize the exchange of events between

the main event loop and the different threads we created for implementing our

functionality. The following sections describe in detail the system implementation

for flow creation, flow scheduling, ARP requests, and fault detection.

Fabric Manager

Fabric Manager
ARP Handler Flow Scheduler Fault Manager

Device
Driver

Global Fault MatrixGloball ARP Cache

secchan

ARP Handler Keep-Alive
Handler Fault Detector

Local Fault MatrixLocal ARP Cache

NetFPGA

OpenFlow Protocol

Control Plane Server

Switch User Space

Switch Kernel Space

Netlink IPC

PCI Bus

Hardware

Figure 5.4: Managed Network Fabric Functional Architecture

5.3.1 Fault Detection

As described in Figure 5.4, fault detection consists of components that we

have added to both the secchan and the controller process. Within secchan, we

maintain a vector, localLinks, that corresponds to each interface on the switch.

A value of 1 indicates that a packet was received on a interface. 0 indicates no

activity and -1 indicates that the interface is not in use. The default data path

has been modified so that whenever secchan receives an incoming packet on an

interface, the corresponding slot in the localLinks vector is updated with the value

34

of 1. The system interprets any packet received on an interface as evidence that a

particular link is still active. Figure 5.5 illustrates the secchan data path.

Secchan

local_packet_in_
handler

Set local links Keep
Alive

handle_arp create_new_flow_entry

Local ARP Cache

create ARP
Request for

Fabric Manager

Send ARP
request to Fabric

Manager

Device
Driver

NetFPGA

Switch Kernel Space

PCI Bus

Netlink IPC Switch User Space

Hardware

main event loop

1 00 1

Local Links Vector

Figure 5.5: Secchan Datapath

To cover the case where no application traffic is transmitted over a link,

we have modified secchan so that a background thread as illustrated in Figure 5.6

periodically transmits a keep-alive message on each interface that is facing another

switch. The thread creates the keep alive message and serializes it to the main

event loop thread for processing using the Pending Queue. The main-event loop

thread then handles the packet out logic. The keep-alive message is simply a

standard Ethernet packet as described in Listing A.1 where the source mac address

is populated with the unique identifier of the sending switch for identification

purposes. Keep-alive messages are transmitted every 40 milliseconds. To prevent

a flow entry from being set in the hardware, we have added an additional packet

in handler in secchan to suppress the receival of the keep-alive message.

To detect the failure of a link, we have added an additional fault detection

thread (Figure 5.6) to secchan that periodically wakes up every 65 milliseconds

35

secchan

Fault Detect Thread

Main Event Loop

Keep Alive Send Thread

Start
Keepalive_send

Create Keep Alive
Packet

enqueueQueueTxM
sg

Packet in
handling

Packet out
handling

Process Pending
Queue

Pending Queue

Fault Detect
Start

Check / Reset local
Link States

enqueueQueueTxM
sg

Figure 5.6: Secchan Threads

and monitors the localLinks vector. The fault detection inspects each valid vector

element and interprets a value of 1 as evidence that a connected link is still valid. If

a value of 0 is discovered within the 65 millisecond window, the fault detect thread

will update the local graph matrix and transmit a Fault Notification message to

the fabric manager. After inspecting a vector element, the fault detection thread

resets the element value to 0. The Fault Notification message contains the graph

edge as identified by the source and destination switch and the state of the edge.

The message is implemented using a custom OpenFlow vendor message and is

described in Listing A.5.

Upon receiving the Fault Notification message, the fabric manager updates

the fault matrix and sends a Fault Detect message (Listing A.5) to all connected

switches. The Fault Detect message informs each switch that a network link state

has changed. Apart from the type, the format of the Fault Detect is the same as

the Fault Notify message.

36

5.3.2 Flow Creation

By default, packets that don’t match a hardware flow entry are raised as

packet exceptions to secchan which in turn relays the packet to the controller for

classification and processing. The Controller would then interpret the packet and

respond with a policy update in the form of a flow entry action.

Fabric Manager

Process Vendor
Message

Receive flow
stats

Handle fault
message

Update Fault
Matrix and Notify

Process Packet
In

Enqueue flow
stats response

Enter Main Event
Loop

Process Packet
Out

Processing
PendingQueue

secchan

OpenFlow Protocol

Select a Core
Switch for ARP

forwarding

Send ARP
request to Core

Receive ARP
Request /
Response

Local ARP Cache

Lookup / Update

Figure 5.7: Fabric Manager Datapath

We modified the default datapath by adding packet handling logic to sec-

chan as illustrated in Figure 5.5 so that instead of relaying a new packet to the

fabric manager for classification, secchan creates a new flow entry where the ac-

tion is a redirect to an upward bound interface based on a ECMP style hash. The

ECMP hash is created using the packets 10-tuple. Secchan simply intercepts the

packet and pushes a new Flow Entry to the underlying switch using the OpenFlow

message described in Listing A.8.

5.3.3 ARP

To implement proxy ARP, we modified the secchan and controller datapath

by adding additional modules. As illustrated in Figure 5.5, we added an additional

37

Parallel Sender
Side Increment

Parallel Sender
Side Increment

Parallel Sender
Side IncrementParallel Sender

Side Increment

Fabric Manager Main Thread

Flow Stat Response Queue

Flow Stats Poller

Send Flow Stats
Requests

Receive Flow
Stats Responses

Parse and
process Flow

Stat Responses

Transmit Queue

Estimate
Demands

Schedule Flows

Transmit Flow
Entry Updates

Packet out
handlers

process flow
stats

Packet in
handlers

Processing
Transmit Queue

Msgs

Parallel Sender
Side Increment

Parallel Receiver
Side Increment

Figure 5.8: Fabric Manager Threads

packet-in handler in secchan that intercepts ARP requests. ARP requests will

always appear in secchan because we prevent a hardware flow entry from being

created. Upon receiving the ARP request, secchan stores the sending hosts MAC

address in the local ARP cache if it doesn’t already exist and checks whether the

requested IP address exists in the cache. If the requested IP can be resolved,

secchan will create a ARP response and return it back to the requesting end host.

Listing A.2 describes the ARP request and response packet format.

If secchan cannot resolve the ARP request locally, it encapsulates the ARP

request into a custom OpenFlow vendor message and transmits it to the fabric

manager. The format of the encapsulated ARP request is described in Listing A.6.

As illustrated in Figure 5.7, we have modified the controllers datapath so that

encapsulated ARP requests are handled. Upon receiving an encapsulated ARP

request, the controller updates its global ARP cache with the requesting hosts

MAC address and checks whether the requested IP address exists in the cache.

If the ARP request can be resolved, the controller creates a encapsulated ARP

response message as described in Listing A.6 and sends it back to the originating

switch/secchan. In the case where the controller cannot resolve the ARP request,

it will randomly select a connected core switch and forward the ARP request.

Because the flow entries in a core switch are all downward facing, the ARP request

38

will be forwarded to all connected pods.

When an endhost responds to ARP request, the edge switch that the host is

connected to intercepts the ARP response. In our current implementation, secchan

updates the local ARP cache if the responding hosts IP/MAC address does not

already have a cache entry. An update is also sent to the fabric manager which

allows it to also update the global ARP cache. Based on the positional pseudo

MAC of the original ARP requester, the ARP response is forwarded out a specific

upward facing switch interface. Eventually, the ARP response is received by the

Core switch which in turn just forwards it downwards towards the applicable pod

until it reaches the requesting end host.

5.3.4 Flow Scheduler

The Flow Scheduler has been implemented as a modular shared library. The

Fabric Manager executes the Flow Scheduler as a background thread. The public

interface exposed by the Flow Scheduler is described in Listing A.12. As described

earlier in the design, the Flow Scheduler consists of 3 steps that are executed for

each iteration of the thread, (1) Detection of Large Flows, (2) Estimation of Flow

Demands, and (3) Scheduling of Flows. The overall implementation structure is

described in Figure 5.8.

To detect whether large flows exist in Step 1, the Flow Scheduler requests

Flow Stats from all connected edge switches using the OpenFlow message described

in Listing ??. The request is serialized to the main event loop for processing

by using the Transmit Queue. Upon receiving the Flow Stats request message,

each switch’s secchan process will relay the flow stats request to the underlying

hardware and eventually relay a Flow Stats Response (Listing ??) message back

to the Fabric Manager. Each OpenFlow Flow Stat Response message contains a

listing of all flows currently programmed for a particular switch and information

regarding each flow. Flow Stat Responses that meet or exceed the elephant flow

threshold are collected up and serialized back to the Flow Scheduler using the Flow

Stat Response Queue.

In Step 2, the set of flow stat responses is used to populate the demand

39

matrix. A demand estimation for all the large flows is necessary before scheduling

can occur. As described earlier in the design, each row in the matrix represents a

sending host and each column represents a receiving host. Once the matrix is ini-

tiated, the demand estimator first iterates through all the senders and attempts to

increase the flow capacity. After processing all the senders, the demand estimator

then iterates through all the receivers and decrements flow capacity for any excess

entries. This process is repeated until convergence occurs. In order to speed up pro-

cessing, we parallelized the increment/decrement step for the senders and receivers

by spawning a set of worker threads (Figure 5.8) and creating a thread barrier to

allow for the consolidation of computed results among the worker threads. We

spawn one worker thread for each available core. The amount of rows or columns

that each worker thread will handle is calculated by dividing the number of hosts

by the number of available cores. In the original implementation, incrementing the

senders and decrementing the receivers was performed in a serial fashion.

Originally, the demand matrix was implemented as a two dimensional array.

However, it was discovered while running large size simulations in Hedera that the

time to allocate the array and the time to traverse the matrix that was mostly

sparse was significant. For this thesis, we revised the demand matrix so that it

was implemented using a custom sparse matrix data structure. The definitions for

the sparse matrix are described in Listing ??.

In Step 3, flow scheduling occurs based on the estimated flow demands

generated in step 2. The flow scheduler applies one of the implemented algorithms,

Global First Fit or Simulated Annealing, and generates a set of policy updates to

the switches to reassign the existing elephant flows using the OpenFlow Flow

Modification Message (Listing A.8). We have also integrated the fault detection

into the flow placement logic. Once a core switch has been assigned for a flow, we

use the fault matrix graph to check whether the path to the core is still valid. If

the path to a core switch is broken, the flow scheduler will not reassign the existing

flows entries.

Chapter 6

Evaluation

In this section, we evaluate our system using a set of experiments to gauge

the efficiency and scalability of our implementation. We describe the experiments

carried out on our system in four parts. In the first part, we measured convergence

and control overhead for unicast communication in the presence of link failures. In

the second part, we examine the viability of our fabric manager to support a large

scale data center using projections. For the third part, we evaluate the feasibility

of migrating a virtual machine within our fabric. Lastly, we measured the bisection

bandwidth achieved by the system based on varying communication patterns.

6.1 Fault Detection Convergence Time

In this experiment we measured the convergence time for a UDP flow while

introducing a number of random link failures. A sender transmits UDP packets

at a fixed rate of 250Mbps to a receiver in a different pod. We ran 20 iterations

for each link failure case and computed the average convergence time to restablish

communication. Figure 6.1 plots our our results as a function of increasing numbe

of randomly induced faults . Convergence time starts at approximately 65ms for a

single failure and increases slowly due to the additional overhead of handling each

additional failure.

We repeated the same experiment for TCP communication. We monitored

network activity using wireshark at the sender while injecting a link failure along

40

41

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

C
o
n
v
er

g
en

ce
 t

im
e

(m
s)

Number of random failures

Figure 6.1: Convergence time with increasing faults.

44

48

52

56

60

64

68

72

76

80

84

88

92

15.38 15.48 15.58 15.68 15.78 15.88 15.98

S
e
q
u
e
n
ce

 N
u
m

b
e
r

Time(s)

Failure Recovery

RTOmin =

200ms

Figure 6.2: TCP Flow Fault Convergence.

42

the path between sender and receiver. To determine when a fault was injected,

we monitored the TCP sequence numbers at the receiver to get an indication of

when packets were being received. As illustrated in Figure 6.2, convergence for

TCP flows takes longer than the baseline for UDP despite the fact that the same

steps are taken in the underlying network. This discrepancy results because TCP

loses an entire window worth of data. Thus, TCP falls back to the retransmission

timer, with TCP’s RTOmin set to 200ms in our system. By the time the first

retransmission takes place, connectivity has already been re-established in the

underlying network.

6.2 Scalability

One area of concern regarding the managed network fabric is scalability of

the fabric manager for larger topologies. Because of the complexities involved with

customizing secchan, we were not able to stress test the fabric manager with test

clients that would simulate control plane traffic from thousands of hosts. However,

we used measurements from our existing system to project the requirements for a

larger network fabric.

0

50

100

150

200

250

300

350

400

128 5128 10128 15128 20128 25128 30128

C
o

n
tr

o
l

tr
af

fi
c

(M
b

p
s)

Number of hosts

100 ARPs/sec/host

50 ARPs/sec/host

25 ARPs/sec/host

Figure 6.3: Fabric Manager Control Traffic.

43

Figure 6.3 describes the ARP control traffic expected by the fabric manager

based on the overall number of hosts in a data center. We considered the cases

where each host transmits 25, 50, and 100 ARP requests/second to the fabric man-

ager. Since end host ARP caches maintain entries for 60 seconds, 25 ARPs/second

is already an extreme condition. In a data center containing 27,648 hosts trans-

mitting 100 ARPs per second, the fabric manager will need to manage 376Mbits/s

of control traffic.

0

10

20

30

40

50

60

70

128 5128 10128 15128 20128 25128 30128

C
o

re
s

re
q

u
ir

ed

Number of hosts

100 ARPs/sec/host

50 ARPs/sec/host

25 ARPs/sec/host

Figure 6.4: CPU Requirements for ARP requests.

Our measurements indicate that approximately 25 µs of time is required

to process each ARP request/response in our non-optimized implementation. We

envision that multiple fabric managers could be deployed to different cores or

physical machines in order to to allow the system to scale out. Figure 6.4 describes

the CPU requirements for the fabric manager as a function of the number of

hosts in the data center generating different rates of ARP requests. Based on our

projects, an estimated number of 70 independent cores would be required to meet

the demands of the highest level of ARPs/second in a large data center.

44

6.3 VM Migration

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45

T
h
ro

u
g
h
p

u
t

(M
b

p
s)

Time (Seconds)

TCP flow transfer

State transfer

Figure 6.5: VM Migration.

Figure 6.5 plots the results of the experiment with measured TCP rate for

both state transfer and flow transfer (measured at the sender) on the y-axis as a

function of time progressing on the x-axis. We see that approximately 5+ seconds

into the experiment, throughput of the TCP flow drops below the peak rate as the

state of the VM begins to migrate to a new physical machine. During migration

there are short time periods (200-600ms) during which the throughput of the flow

drops to near zero (not visible in the graph due to the scale). Communication

resumes with the VM at full speed after approximately 32 seconds (dominated by

the time to complete VM state transfer).

6.4 Benchmark Communication Suite

In the absence of actual network traces from production data centers, we

constructed a set of communication patterns to be perform on our testbed to

simulate expected network activity. In each pattern, a sender transmits a TCP

based flow. The following patterns were constructed.

(1) Stride(i): A host with index x sends to the host with index (x +

i)mod(num hosts).

(2) Staggered Prob (EdgeP, PodP): A host sends to another host in the

45

stag0(0.2,0.3) stag1(0.2,0.3) stag2(0.2,0.3) stag0(0.5,0.3) stag1(0.5,0.3) stag2(0.5,0.3) stride1 stride2 stride4 stride8
0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 B
ise

ct
io

n
Ba

nd
w

id
th

 (M
bp

s)

rand0 rand1 rand2 randbij0 randbij1 randbij2 randx2 randx3 randx4 hotspot
0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 B
ise

ct
io

n
Ba

nd
w

id
th

 (M
bp

s)

ECMP Global First−Fit Simulated Annealing Non−blocking

Figure 6.6: Physical testbed benchmark suite results.

same edge switch with probability EdgeP, and to its same pod with probability

PodP, and to the rest of the network with probability 1-EdgeP - PodP.

(3) Random: A host sends to any other host in the network with uniform

probability. We include bijective mappings and ones where hotspots are present.

6.5 Testbed Benchmark Results

We executed the benchmark communication patterns on our testbed data

plane network as follows. 16 hosts establish socket sinks for incoming traffic and

measure the incoming bandwidth. Each host starts their flows in succession ac-

cording to the pattern described earlier. Each pattern runs for 60 seconds and we

observed the average bisection bandwidth for the middle 40 seconds.

To provide a contrast the flow scheduling techniques implemented in our

system, we executed our communication patterns on the control plane network. In

addition to the data plane network, all of our hosts are connected on a separate

control plane network that’s implemented by our non-blocking 48-port 1 GigE

Ethernet switch. In addition, we also compare our flow scheduling techniques

against ECMP, the current state of the art multipathing solution in layer 3 routers.

Figure 6.6 summarizes the bisection bandwidth for our benchmark results,

46

Table 6.1: Statistics for a 117GB Data Shuffle.

ECMP GFF SA Control

Shuffle time (s) 438.44 335.50 335.96 306.37

Host completion (s) 358.14 258.70 261.96 226.56

Bisec. BW (MB/s) 336.26 468.19 463.64 552.86

Goodput (MB/s) 24.61 32.18 32.88 38.59

ECMP, and the control plane. In all the tests, Global First Fit and Simulated

Annealing outperform static hashing (ECMP) and come very close to matching

the optimal bisection bandwidth (15.4 Gb/s goodput) provided by the control

plane.

6.6 Data Shuffle

Another common communication pattern in data centers is the all-to-all

in-memory data shuffle. A data shuffle is an operation typically exhibited by

MapReduce/Hadoop operations where every host transfers a large amount of data

to every other host participating in the shuffle. For our experiment, we configured

each host in our testbed to sequentially transfer 500MB to every other host using

TCP. In total, a 117GB suffle was performed. Table 6.1 describes the results of the

shuffle. In general, the flow scheduler in our system provides a 39% improvement

in bisection bandwidth over static ECMP hash-based routing.

Chapter 7

Conclusion

The emergence of large scale data centers containing tens to hundreds of

thousands of physical and virtual nodes has created many challenges from a net-

working standpoint. Not only is there significant traffic coming in and out of

data centers, there is also signficant traffic being communicated within data cen-

ters. The increasing use of applications such as MapReduce and Hadoop has seen

the emergence of significant all to all communication traffic patterns within data

centers. Existing data center implementations using legacy layer 2 and layer 3

protocols are hard pressed in being able to deliver high bisection bandwidth to

end hosts while remaining fault tolerant. In this thesis, we have presented the

design and implementation of a managed network fabric for data centers that ad-

dresses existing shortcomings in current data center implementations. The key

contributions of this thesis are:

1. Construction of a functioning data center using a Fat Tree Network.

2. Working implementation of a managed network fabric system on top of the

Fat Tree Network that demonstrates the viability of using a centralized fabric

manager that treats the network as a single logical unit.

3. Implementation and evaluation of our design techniques that address the

shortcomings of layer 2 and layer 3 protocols for constructing large size net-

works for data centers.

47

48

7.1 Future Work

In this section, we describe areas in which future work can be explored for

our implementation.

• Address missing functionality in OpenFlow and Netfpga: As de-

scribed earlier, the version of OpenFlow and NetFPGA that we used did

not support hardware based MAC address rewriting and MAC address wild

card matching in the flow table entries. The addition of these features would

enable the system design to be fully realized.

• Improve Flow Scheduling Algorithms: Presently, the simulated anneal-

ing algorithm iterates multiple times before settling on a core switch to assign

for a particular elephant flow. However, if the path to the core is broken,

the scheduled results are simply discarded and the compute cycles are simply

wasted. Ideally, for each iteration of the algorithm, the present state of paths

to all available core switches should be considered by the algorithm when it

probabilistically decides to reassigns flows from one core switch to another.

• Explore redundancy and clustering of fabric manager: The present

implementation of secchan only allows one data path to be supported by

one controller. To improve fabric manager fault tolerance and scalability, it

would be ideal if an OpenFlow datapath could be modified so that multiple

fabric managers can be supported.

• Integrate location discovery protocol: In the current implementation,

all edge, aggregation, and core switches are manually configured based on

the role it plays in the fabric. Ideally, a discover protocol should be used so

that switches can automatically discover its role in the network.

• Expanded Evaluation: At the present moment, we have only evaluated

the system based on our benchmark communication test suite. Although

we were able to run Hadoop jobs on our managed network fabric, the end

hosts lacked disk drives that could deliver enough bandwidth to cause jobs

to be network bound. Ideally, for future evaluations, it would be ideal to use

49

either disk arrays or solid state disks so that an evaluation of actual all to all

communication traffic can be performed. In addition, it would also be ideal

to validate that our system gracefully degrades in the presence of increasing

link failures.

Appendix A

Appendix

Figure A.1: Our Experimental Data Center

50

51

A.1 Data Types and Message Formats

struct eth header {
u i n t 8 t e t h d s t [ETH ADDR LEN] ;

u i n t 8 t e t h s r c [ETH ADDR LEN] ;

u i n t 1 6 t e th type ;

} a t t r i b u t e ((packed)) ;

struct DCSwitch KeepAlivePacket {
struct eth header header ;

u i n t 8 t pad [5 0] ;

} a t t r i b u t e ((packed)) ;

Listing A.1: Keep Alive Packet Format

struct arp e th header {
/∗ Generic members . ∗/
u i n t 1 6 t ar hrd ; /∗ Hardware type . ∗/
u i n t 1 6 t ar pro ; /∗ Protoco l type . ∗/
u i n t 8 t a r h ln ; /∗ Hardware address l e n g t h . ∗/
u i n t 8 t a r p ln ; /∗ Protoco l address l e n g t h . ∗/
u i n t 1 6 t ar op ; /∗ Opcode . ∗/

/∗ Ethernet+IPv4 s p e c i f i c members . ∗/
u i n t 8 t ar sha [ETH ADDR LEN] ; /∗ Sender hardware address . ∗/
u i n t 3 2 t ar spa ; /∗ Sender p ro t o co l address . ∗/
u i n t 8 t a r tha [ETH ADDR LEN] ; /∗ Target hardware address . ∗/
u i n t 3 2 t ar tpa ; /∗ Target p r o t o co l address . ∗/

} a t t r i b u t e ((packed)) ;

typedef struct arp packet

{
struct eth header eth ;

struct arp e th header arp ;

} arp packet ;

Listing A.2: ARP Packet Format

52

/∗ Header on a l l OpenFlow packe t s . ∗/
struct o fp header {

u i n t 8 t v e r s i o n ; /∗ OFP VERSION. ∗/
u i n t 8 t type ; /∗ One o f the OFPT cons tan t s . ∗/
u i n t 1 6 t l ength ; /∗ Length i n c l ud i n g t h i s o fp header . ∗/
u i n t 3 2 t xid ; /∗ Transact ion id a s s o c i a t e d wi th t h i s packe t .

Rep l i e s use the same id as was in the

r e que s t to f a c i l i t a t e pa i r i n g . ∗/
} ;

/∗ Vendor ex t ens ion . ∗/
struct o fp vendor header {

struct o fp header header ; /∗ Type OFPT VENDOR. ∗/
u i n t 3 2 t vendor ; /∗ Vendor ID :

∗ − MSB 0: low−order b y t e s are

∗ IEEE OUI.

∗ − MSB != 0: de f ined by OpenFlow

∗ consortium . ∗/
/∗ Vendor−de f ined a r b i t r a r y a d d i t i o n a l data . ∗/

} ;

Listing A.3: OpenFlow Message Headers

53

struct DCSwitch OFP Msg {
struct o fp vendor header vendorHeader ;

u i n t 3 2 t type ;

} a t t r i b u t e ((packed)) ;

Listing A.4: Custom OpenFlow Message Header Format

struct DCSwitch OFP Edge Fault {
u i n t 3 2 t s r c s w i t c h i n d e x ;

u i n t 3 2 t t a r s w i t c h i n d e x ;

u i n t 3 2 t edgeState ;

} a t t r i b u t e ((packed)) ;

struct DCSwitch OFP Fault {
struct DCSwitch OFP Msg dcswitchOFPMsg ;

u i n t 3 2 t e d g e f a u l t s s i z e ;

struct DCSwitch OFP Edge Fault edgeFaults [0] ;

} a t t r i b u t e ((packed)) ;

Listing A.5: Fault Detection and Notification Message

54

typedef struct DCSwitch Control Msg {
struct DCSwitch OFP Msg dcswitchOFPMsg ;

char msg [MAXMESG] ;

} DCSwitch Control Msg ;

Listing A.6: Encapsulated ARP Request

/∗ F i e l d s to match aga in s t f l ow s ∗/
struct ofp match {

u i n t 3 2 t wi ldcards ; /∗ Wildcard f i e l d s . ∗/
u i n t 1 6 t i n p o r t ; /∗ Input sw i t ch por t . ∗/
u i n t 8 t d l s r c [OFP ETH ALEN] ; /∗ Ethernet s rc address . ∗/
u i n t 8 t d l d s t [OFP ETH ALEN] ; /∗ Ethernet d e s t address . ∗/
u i n t 1 6 t d l v l a n ; /∗ Input VLAN. ∗/
u i n t 1 6 t d l type ; /∗ Ethernet frame type . ∗/
u i n t 8 t nw proto ; /∗ IP p ro t o co l . ∗/
u i n t 8 t pad ; /∗ Align to 32− b i t s . ∗/
u i n t 3 2 t nw src ; /∗ IP src address . ∗/
u i n t 3 2 t nw dst ; /∗ IP de s t address . ∗/
u i n t 1 6 t t p s r c ; /∗ TCP/UDP src por t . ∗/
u i n t 1 6 t tp ds t ; /∗ TCP/UDP des t por t . ∗/

} ;

Listing A.7: OpenFlow Flow Entry Match Message

55

/∗ Flow se tup and teardown (c o n t r o l l e r −> datapath) . ∗/
struct ofp f low mod {

struct o fp header header ;

struct ofp match match ; /∗ F i e l d s to match ∗/

/∗ Flow ac t i on s . ∗/
u i n t 1 6 t command ; /∗ One o f OFPFC ∗ . ∗/
u i n t 1 6 t i d l e t i m e o u t ; /∗ I d l e time be f o r e d i s ca rd ing

(seconds) . ∗/
u i n t 1 6 t hard t imeout ; /∗ Max time be f o r e d i s ca rd ing

(seconds) . ∗/
u i n t 1 6 t p r i o r i t y ; /∗ Pr i o r i t y l e v e l o f f l ow entry . ∗/
u i n t 3 2 t b u f f e r i d ; /∗ Buf fered packe t to app ly to

(or −1). Not meaningfu l f o r

OFPFC DELETE∗ . ∗/
u i n t 1 6 t out por t ; /∗ For OFPFC DELETE∗ commands ,

r e qu i r e matching e n t r i e s to

inc l ude t h i s as an

output por t . A va lue o f

OFPP NONE ind i c a t e s no

r e s t r i c t i o n . ∗/
u i n t 8 t pad [2] ; /∗ Align to 32− b i t s . ∗/
u i n t 3 2 t r e s e rved ; /∗ Reserved f o r f u t u r e use . ∗/
struct o f p a c t i o n h e a d e r a c t i o n s [0] ; /∗ The ac t i on l en g t h i s

i n f e r r e d from the

l en g t h f i e l d in the

header . ∗/
} ;

Listing A.8: OpenFlow Flow Entry Modification Message

56

enum ofp flow mod command {
OFPFC ADD, /∗ New f l ow . ∗/
OFPFC MODIFY, /∗ Modify a l l matching f l ows . ∗/
OFPFC MODIFY STRICT, /∗ Modify entry s t r i c t l y matching

w i l d ca rd s ∗/
OFPFC DELETE, /∗ Dele te a l l matching f l ow s . ∗/
OFPFC DELETE STRICT, /∗ S t r i c t l y match w i l d ca rd s and

p r i o r i t y . ∗/
OFPFC MODIFY ADD /∗ Modify a l l matching f l ows and

add a new f l ow i f no match was

found ∗/
} ;

Listing A.9: OpenFlow Flow Entry Modification Constants

/∗ Body f o r o f p s t a t s r e q u e s t o f type OFPST FLOW. ∗/
struct o f p f l o w s t a t s r e q u e s t {

struct ofp match match ; /∗ F i e l d s to match ∗/
u i n t 8 t t a b l e i d ; /∗ ID of t a b l e to read

(from o f p t a b l e s t a t s)

or 0 x f f f o r a l l t a b l e s . ∗/
u i n t 8 t pad ; /∗ Align to 32 b i t s . ∗/
u i n t 1 6 t out por t ; /∗ Require matching e n t r i e s

to inc l ude t h i s as an output por t .

A va lue o f OFPP NONE ind i c a t e s no

r e s t r i c t i o n . ∗/
} ;

OFP ASSERT(s izeof (struct o f p f l o w s t a t s r e q u e s t) == 4 0) ;

Listing A.10: OpenFlow Flow Stats Request Message

57

/∗ Body o f r e p l y to OFPST FLOW reque s t . ∗/
struct o f p f l o w s t a t s {

u i n t 1 6 t l ength ; /∗ Length o f t h i s entry . ∗/
u i n t 8 t t a b l e i d ; /∗ ID of t a b l e f l ow came from . ∗/
u i n t 8 t pad ;

struct ofp match match ; /∗ Descr ip t i on o f f i e l d s . ∗/
u i n t 3 2 t durat ion ; /∗ Time f l ow has been a l i v e in

seconds . ∗/
u i n t 1 6 t p r i o r i t y ; /∗ Pr i o r i t y o f the entry . Only

meaningfu l when t h i s i s not an

exact−match entry . ∗/
u i n t 1 6 t i d l e t i m e o u t ; /∗ Number o f seconds i d l e b e f o r e

e x p i r a t i on . ∗/
u i n t 1 6 t hard t imeout ; /∗ Number o f seconds b e f o r e

e x p i r a t i on . ∗/
u i n t 1 6 t pad2 [3] ; /∗ Pad to 64 b i t s . ∗/
u i n t 6 4 t packet count ; /∗ Number o f packe t s in f l ow . ∗/
u i n t 6 4 t byte count ; /∗ Number o f b y t e s in f l ow . ∗/
struct o f p a c t i o n h e a d e r a c t i o n s [0] ; /∗ Actions . ∗/

} ;

OFP ASSERT(s izeof (struct o f p f l o w s t a t s) == 7 2) ;

Listing A.11: OpenFlow Flow Stats Response Message

struct f l o w l i s t ∗
estimate demands (struct f l o w l i s t ∗ l i s t o f f l o w s ,

const int k) ;

struct f l o w l i s t ∗
s c h e d u l e f l o w s (struct f l o w l i s t ∗ l i s t o f f l o w s ,

const int k , const int s chedu l e r) ;

Listing A.12: Flow Scheduler Interface

58

struct host demand node optimized {
f loat demand ; // demand per f l ow

u i n t 8 t f l a g ;

u i n t 8 t r e c e i v e r l i m i t e d ; // Used and r e s e t in

// r e c e i v e r s i d e d e c r emen t

u i n t 1 6 t num flows ; // number o f f l ow s between

// the source and d e s t i n a t i o n pa i r

} ;

Listing A.13: Demand Estimator End Host Data Structure Definitions

/∗∗
∗ Represents an i n d i v i d u a l c e l l in the matrix

∗/
struct matr ix node opt imized {

/∗∗
∗ row , column coord ina t e s

∗/
u i n t 3 2 t s r c h o s t ;

u i n t 3 2 t d s t h o s t ;

/∗∗
∗ va lue

∗/
struct host demand node optimized nodeValue ;

/∗ handle f o r row − hash t a b l e indexed by d s t h o s t ∗/
UT hash handle r r ;

/∗ handle f o r column − hash t a b l e indexed by s r c h o s t ∗/
UT hash handle cc ;

} ;

Listing A.14: Sparse Matrix Node Data Structure Definition

59

/∗∗
∗ matrix data s t r u c t u r e

∗/
struct matr ix opt imized {

/∗∗
∗ Al l the rows o f the matrix

∗
∗ An array o f hash t a b l e s − one f o r each row (s r c h o s t)

∗ o f the matrix

∗ Memory f o r the array must be a l l o c a t e d when the matrix

∗ i s c rea t ed .

∗ Each hash t a b l e i s a po in t e r to the f i r s t e lement in

∗ the uthash hash t a b l e a l l ow s a l l column elements f o r a

∗ row to be searched

∗/
struct matr ix node opt imized ∗∗ rows ;

/∗∗
∗ Al l the columns o f the matrix

∗ An array o f hash t a b l e s − one f o r each colum (d s t h o s t)

∗ o f the matrix

∗ Memory f o r the array must be a l l o c a t e d when the matrix

∗ i s c rea t ed

∗ Each hash t a b l e i s a po in t e r to the f i r s t e lement in the

∗ uthash hash t a b l e

∗ Allows a l l row e lements f o r a column to be searched

∗/
struct matr ix node opt imized ∗∗ columns ;

/∗∗
∗ # of matrix c e l l s popu la ted in the matrix

∗/
int numElements ;

} ;

Listing A.15: Sparse Matrix Data Structure Definition

60

struct matr ix opt imized ∗
matr ix new optimized (const int k) ;

void

m at r i x d e l e t e o p t i m i z ed (struct matr ix opt imized ∗ ,

const int k) ;

/∗∗
∗ Returns NULL i f matrix node doesn ’ t e x i s t

∗/
struct matr ix node opt imized ∗
matr ix ge t node opt imized (struct matr ix opt imized ∗matrix ,

u i n t 3 2 t srcHost ,

u i n t 3 2 t dstHost) ;

/∗∗
∗ Returns a po in t e r to the new entry a f t e r i n s e r t i n g the new entry

∗/
struct matr ix node opt imized ∗
ma t r i x i n s e r t no de op t i m i z e d (struct matr ix opt imized ∗ matrix ,

struct f low node ∗aFlowNode) ;

Listing A.16: Sparse Matrix Interface Definitions

Bibliography

[AFLV] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scal-
able, Commodity Data Center Network Architecture. In Proceedings of
ACM SIGCOMM, 2008.

[AFRR+] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic Flow Schedul-
ing for Data Center Networks. In Proceedings of NSDI, 2010.

[Bor] D. Borthakur. The Hadoop Distributed File System. http://hadoop.
apache.org/core/docs/current/hdfs design.pdf.

[Car] A. Carter. Do It Green: Media Interview with Michael Manos, 2007.
http://edge.technet.com/Media/Doing-IT-Green.

[CCF+] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,
Aman Shaikh, and Jacobus van der Merwe. Design and Implementation
of a Routing Control Platform. In Proceedings of NSDI, 2005.

[CFP+] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: Taking Control of the Enter-
prise. In Proceedings of ACM SIGCOMM, 2007.

[cis] Cisco Data Center Infrastructure 2.5 Design Guide. http://www.cisco.
com/univercd/cc/td/doc/solution/dcidg21.pdf.

[DG] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of OSDI, 2004.

[GGL] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
File System. In Proceedings of SOSP, 2003.

[GHM+] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang.
A Clean Slate 4D Approach to Network Control and Management. ACM
SIGCOMM CCR, 2005.

61

62

[GJK+] Albert Greenberg, Navendu Jain, Srikanth Kandula, Changhoon Kim,
Parantap Lahiri, David Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A Scalable and Flexible Data Center Network. In Proceedings of
ACM SIGCOMM, 2009.

[GLL+] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yun-
feng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A
High Performance, Server-Centric Network Architecture for Modular
Data Centers. In Proceedings of ACM SIGCOMM, 2009.

[GLM+] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel,
and Sudipta Sengupta. Towards a Next Generation Data Center Ar-
chitecture: Scalability and Commoditization. In Proceedings of ACM
PRESTO, 2008.

[GWT+] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and
Songwu Lu. DCell: A Scalable and Fault-Tolerant Network Structure
for Data Centers. In Proceedings of ACM SIGCOMM, 2008.

[had] Apache Hadoop Project. http://hadoop.apache.org.

[Hof08] Ty Hoff. Google Architecture. http://highscalability.com/
google-architecture, November 2008.

[IBY+] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In Proceedings of ACM EuroSys, 2007.

[KCR] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in
SEATTLE: A Scalable Ethernet Architecture for Large Enterprises. In
Proceedings of ACM SIGCOMM, 2008.

[LMW+] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb,
Paul Hartke, Jad Naous, Ramanan Raghuraman, and Jianying Luo.
NetFPGA–An Open Platform for Gigabit-rate Network Switching and
Routing. In Proceedings of IEEE MSE, 2007.

[MAB+] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling Innovation in Campus Networks. ACM SIG-
COMM CCR, 2008.

[MPF+] Radhika Niranjan Mysore, Andreas Pamporis, Nathan Farrington, Nel-
son Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subra-
manya, and Amin Vahdat. PortLand: A Scalable, Fault-Tolerant Layer
2 Data Center Network Fabric. In Proceedings of ACM SIGCOMM,
2009.

63

[PED+09] Radia Perlman, Donald Eastlake, Dinesh G. Dutt, Silvano Gai, and
Anoop Ghanwani. Rbridges: Base Protocol Specification. Technical
report, Internet Engineering Task Force, 2009.

[Rab] L. Rabbe. Powering the Yahoo! Network. http://ycorpblog.com/2006/
11/27/powering-the-yahoo-network.

[Sha08] Stephen Shankland. Google Spotlights Data Center Inner Workings.
http://news.cnet.com/8301-10784 3-9955184-7.html, May 2008.

[SMC] Malcolm Scott, Andrew Moore, and Jon Crowcroft. Addressing the
Scalability of Ethernet with MOOSE. In EuroSys Poster session, 2008.

[YMN+] Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hui
Zhang, and Zheng Cai. Tesseract: A 4D Network Control Plane. In
Proceedings of NSDI, 2007.

