Skip to main content
eScholarship
Open Access Publications from the University of California

Imaging and quantifying Brownian motion of micro-and nanoparticles using phase-resolved Doppler variance optical coherence tomography

  • Author(s): Kim, CS
  • Qi, W
  • Zhang, J
  • Kwon, YJ
  • Chen, Z
  • et al.
Abstract

Different types and sizes of micro-and nanoparticles have been synthesized and developed for numerous applications. It is crucial to characterize the particle sizes. Traditional dynamic light scattering, a predominant method used to characterize particle size, is unable to provide depth resolved information or imaging functions. Doppler variance optical coherence tomography (OCT) measures the spectral bandwidth of the Doppler frequency shift due to the Brownian motion of the particles utilizing the phaseresolved approach and can provide quantitative information about particle size. Spectral bandwidths of Doppler frequency shifts for various sized particles were quantified and were demonstrated to be inversely proportional to the diameter of the particles. The study demonstrates the phaseresolved Doppler variance spectral domain OCT technique has the potential to be used to investigate the properties of particles in highly scattering media. © 2013 The Authors.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View