Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Reelin deficiency exacerbates cocaine‐induced hyperlocomotion by enhancing neuronal activity in the dorsomedial striatum

Published Web Location

https://doi.org/10.1111/gbb.12828
Abstract

The Reln gene encodes for the extracellular glycoprotein Reelin, which regulates several brain functions from development to adulthood, including neuronal migration, dendritic growth and branching and synapse formation and plasticity. Human studies have implicated Reelin signaling in several neurodevelopmental and psychiatric disorders. Mouse studies using the heterozygous Reeler (HR) mice have shown that reduced levels of Reln expression are associated with deficits in learning and memory and increased disinhibition. Although these traits are relevant to substance use disorders, the role of Reelin in cellular and behavioral responses to addictive drugs remains largely unknown. Here, we compared HR mice to wild-type (WT) littermate controls to investigate whether Reelin signaling contributes to the hyperlocomotor and rewarding effects of cocaine. After a single or repeated cocaine injections, HR mice showed enhanced cocaine-induced locomotor activity compared with WT controls. This effect persisted after withdrawal. In contrast, Reelin deficiency did not induce cocaine sensitization, and did not affect the rewarding effects of cocaine measured in the conditioned place preference assay. The elevated cocaine-induced hyperlocomotion in HR mice was associated with increased protein Fos expression in the dorsal medial striatum (DMS) compared with WT. Lastly, we performed an RNA fluorescent in situ hybridization experiment and found that Reln was highly co-expressed with the Drd1 gene, which encodes for the dopamine receptor D1, in the DMS. These findings show that Reelin signaling contributes to the locomotor effects of cocaine and improve our understanding of the neurobiological mechanisms underlying the cellular and behavioral effects of cocaine.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View