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Ashok Reddy Dinasarapu1, Anjana Chandrasekhar1, Teizo Fujita2, Shankar Subramaniam3

 

 Review Article Open Access

Mannose/mannan-binding lectin (MBL) is a serum lectin synthesized (as a ~32 kDa peptide) by the liver and is one of the key

molecules of the innate immune system. Each peptide has an N (amino)-terminal cysteine-rich region, a middle stretch of a

collagen-like sequence, and a carbohydrate recognition domain (CRD) in the C (carboxy)-terminus. Three identical peptides

form a structural subunit, similar to a collagenous triple helix, which is the basic building block of all circulating molecular

forms of MBL. Further oligomerization of these structural subunits by disulphide bonds in the N-terminal region results in

MBL molecules of different sizes (from dimers to hexamers), but the hexameric form is probably the most common. MBL-

associated serine proteases (MASPs) bind to MBL multimeric forms to stabilize the molecule. MBL is a pattern-recognition

receptor and the CRDs of MBL serve to bind to a wide range of pathogens such as bacteria,  viruses and protozoa, by

recognizing carbohydrate moieties on their surfaces. There are two pathways by which MBL can participate in a host defense

response: 1) MBL activates the lectin complement pathway via MASPs, that converges with the classical complement

pathway, at the level of complement C4 (C4-A or C4-B), and 2) MBL may also act directly as an opsonin, enhancing

phagocytosis by binding to cell-surface receptors present on phagocytic cells.
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PROTEIN FUNCTION

Mannose/mannan-binding lectin (MBL), previously known as

mannan-binding  protein  (MBP)  is  a  (C-type  or  calcium

dependent) serum lectin with primary specificity for sugars

such  as  D-mannose,  N-acetylglucosamine  (GlcNAc),  N-

acetylmannosamine (ManNAc) and L-fucose (Kawasaki et al.

1983,  Sheriff  et  al.  1994).  It  circulates  in  serum as  tri-  to

hexameric forms of the structural subunit (see ‘Interactions

with Ligands and Other Proteins’ section) in association with a

group  of  MBL-associated  serine  proteases  (MASPs)

(Matsushita and Fujita 1992). Being part of the innate immune

system, MBL recognizes  pathogens and damaged cells,  by

binding  to  carbohydrate  moieties  on  microorganisms  and

altered self-surfaces. MBL firmly bound to foreign or altered

self-surfaces,  can  participate  in  host  defense  response  by

activation of: the lectin complement pathway, phagocytosis,

apoptotic cell clearance and inflammatory processes. As MBL

is structurally similar to C1q, MBL can also compete with C1q

for  binding  to  altered  self-ligands  (Oroszlán  et  al.  2007,

Agostinis  et  al.  2012).

Complement activation: The lectin pathway of complement

activation, initiated through MBL-MASP or Ficolin-MASP

cascades, is antibody- and C1q- independent. MBL binds to

specific  carbohydrate  structures  found  on  the  surface  of  a

range  of  microorganisms  in  association  with  MASPs  and

activates the complement system (Ji et al. 1993, Thiel et al.

1997, Kawasaki et al. 1989). On binding to appropriate targets,

the MASP-1 activated MASP-2 (both the MASPs are in the

MBL-MASP complex) sequentially cleaves complement factors

C4 and C2 leading to the formation of C3-convertase (C4b2a)

(Thiel  et  al.  1997).  The C3-convertase is  a  complement  C3

specific enzyme which cleaves C3, into C3a and C3b fragments.

In mice, MBL via MASP-1 and MASP-3 has been shown to be

essential  for  activation  of  complement  factor  D  and  the

alternative complement pathway (Iwaki et al. 2011, Takahashi

et al. 2010).

Opsonization and Phagocytosis: MBL can function directly as

an opsonin by binding to pathogen, or indirectly by producing

opsonins like C3b.  These opsonized pathogens/particles are

recognized by a number of putative binding proteins/phagocytic

receptors including, calreticulin/CD91 (cC1qR/LRP-1) (Ogden

et  al.  2001,  Malhotra  et  al.  1990),  C1QR1 (C1qRp,  CD93)

(Tenner et  al.  1995) and complement receptor type-1 (CR1,

CD35)  (Ghiran  et  al.  2000).  Calreticulin,  an  endoplasmic

reticulum (ER) protein that acts as a chaperone during protein

assembly, can be recruited to the cell surface during phagocytic

recognition (Gagnon et al. 2002). Low levels of serum MBL are

associated with defects in C3b opsonization on yeast surfaces

and recurrent  infections in  children,  which imply a  role  for

MBL in host defense in humans (Super et al. 1989, Turner et al.

1981). MBL (from MBL-coated Salmonella montevideo) was

able to interact directly with cell surface receptors and promoted

opsonophagocytosis (Kuhlman et al. 1989). MBL can opsonize

Human immunodeficiency virus 1 (HIV-1) but does not induce

neutralization at the levels at which it is normally present in

serum. However,  binding and opsonization of HIV by MBL

may alter virus trafficking and viral antigen presentation during

HIV infection (Ying et al.  2004). MBL and C1q (as MBL is

structurally similar to C1q), modulate monocyte activation and

chemokine responses during the clearance of  oxidized (Ox)

LDL.  MBL has  been  reported  to  directly  bind  OxLDL and

enzymatically modified forms of  LDL (E-LDL) in OxLDL-

loaded monocytes and human monocyte derived macrophages

(HMDM) and can therefore enhance cholesterol efflux (Fraser

and Tenner 2010).

Recognition and clearance of altered-self: Role for MBL in the
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clearance of apoptotic cells was suggested through antibody

blockade studies that showed that inhibition of calreticulin and

CD91 blocked collectin mediated uptake of apoptotic cells by

macrophages (Ogden et al.  2001).  MBL was found to bind

directly  to  apoptotic  cells  that  expose  terminal  sugars  of

cytoskeletal proteins, thereby permitting their recognition and

directly  facilitating  their  phagocytosis  by  macrophages.

However, it is important to note that MBL can also act as an

opsonin by mediating uptake not only via collectin receptors

but also through the generation of C3 opsonins (C3b and iC3b)

that  coats  the  targets  and  triggers  uptake  by  complement

receptor type 3 (CR3,CD18/CD11b) (Ip et al. 2009). Changes

in  cell  surface  structures  during  oncogenic  transformation

appear to promote binding of MBL to cancer cells (Hakomori

2001),  wherein  the  protein  can  mediate  cytotoxic  effects

including MBL-dependent cell mediated cytotoxicity (Ma et

al. 1999, Nakagawa et al. 2003).

Modulation of inflammation: MBL plays an important role in

modulating  inflammation,  by  releasing  cytokines  and

interleukins. MBL is involved in the binding of cryptococcal

mannoprotein (MP2) to human peripheral blood mononuclear

cells  (PBMCs)  and  the  release  of  tumor  necrosis  factor-α

(TNF-α) (Chaka et  al.  1997).  Likewise,  PBMCs from HIV

infected  patients  when  bound  to  MBL,  increase  cytokine

production  and  viral  replication  (Huggelund  et  al.  2005).

Monocytes secrete higher levels of TNF-α, interleukin-6 (IL6)

and  IL-1β,  when  infected  with  MBL-opsonised  Neisseria

meningitides  (Jack  et  al.  2001)  or  Leishmania  chagasi

promastigotes  (Santos  et  al.  2001),  as  compared  to  non-

opsonized  bacteria.

REGULATION OF ACTIVITY

Hepatocyte gene expression and plasma levels of MBL are

stimulated by peroxisome proliferator-activated receptor - α

(PPARα) and fenofibrate (used to reduce cholesterol levels in

humans at risk of cardiovascular disease). This evidence links

PPARα to  regulation  of  innate  immunity  and  complement

activation in humans, and suggests a possible role of MBL in

lipid metabolism (Rakhshandehroo et al. 2012). The salivary

scavenger  and  agglutinin  (SALSA,  gp340),  binds  to  both

pathogen surface and MBL. This interaction (when SALSA is

bound  to  the  surface)  activates  the  lectin  pathway,  while

soluble  SALSA  inhibits  MBL  function  (Reichhardt  et  al.

2012). Thus, SALSA can protect host tissues from complement

induced damage. MBL binding to biglycan, an extracellular

matrix proteoglycan, inhibits the lectin pathway (Groeneveld et

al. 2005).

INTERACTIONS

MBL, a member of the collectin family, is a ~32 kDa peptide

with an N-terminal cysteine rich region, a collagenous domain,

and a region with multiple carbohydrate recognition domains

(CRDs)  at  the  C-terminal  (Medzhitov  and  Janeway 2000).

Three  peptide  chains  form  a  homotrimer  through  the

collagenous region, which is the basic structural subunit of all

circulating forms of MBL. This structural homotrimer further

forms oligomers ranging from dimers to hexamers; hexamer

has 6 structural subunits or 18 identical polypeptide chains of

32 kDa each (Sheriff et al. 1994, Hoffmann et al. 1999). MBL

of higher order oligomers (e.g. tetramers to hexamers) are the

effective  forms  in  terms  of  protein  functions,  such  as

carbohydrate  recognition  and  complement  activation  on

microbial surfaces (Lu et al. 1990, Yokota et al. 1995, Iobst et

al.  1994).  The  CRDs  on  each  chain  recognize  or  bind

polysacchar ide  pa t te rns  on  the  sur face  of  many

microorganisms and self-components including apoptotic cells,

phospholipids, and immune complexes. By recognition of cell

surface  carbohydrates  on apoptotic  cells,  MBL can play  an

essential role in controlling not only innate immunity responses

but  also  immune  cell  homeostasis.  The  recognition  of

carbohydrates on aberrant host cells may lead to inflammation

and breakdown of homeostasis  (van Kooyk and Rabinovich

2008,  Ip et  al.  2009).

MBL-MASP  Complex:  MBL,  as  an  oligomer  (tri-  to

hexameric), forms complexes with different MASP proteins as

listed below. All the MASP proteins bind to MBL in homo-

dimeric  form  (Chen  and  Wallis  2001,  Teillet  et  al.  2008,

Thielens  et  al.  2001).  However,  the  stoichiometry  of  the

different  components in the MBL-MASP complex is  highly

variable. MBL binds to MASP via its collagen domain (Super et

al. 1992, Kurata et al. 1993).

MASP-1  and  MASP-2:  MASP-1  and  MASP-2  encoded  by

MASP1  and MASP2  genes respectively, are serine proteases

(Matsushita et al. 2000, Skjoedt et al. 2011, Thiel et al. 1997),

which when activated, sequentially cleave complement proteins

C4 and C2. MASP-1 is auto-activated, when in complex with

MBL bound to microbial  carbohydrates.  Activated MASP-1

then activates MBL bound MASP-2 (Sekine et al. 2013, Héja et

al. 2012a, Héja et al. 2012b). MASP-1 can cleave complement

C3 (weakly as compared to C3-convertase), complement factor

D  in  mice  (Takahashi  et  al.  2010)  and  appears  to  cleave

complement  C2  (Matsushita  et  al.  2000).

MASP-3: MASP-3 is a splice variant of MASP1 gene. It has a

serine  protease  domain,  but  has  no  known  substrates.  It  is

believed  to  compete  with  MASP-2  to  bind  to  MBL  and

therefore down-regulate lectin pathway activation (Dahl et al.

2001).  In  mice  however,  MASP-3  has  been  shown  to  be

important  in  alternative  pathway  of  complement  activation

(Iwaki  et  al.  2011).  Higher  oligomeric  structures  of  MBL

(larger than trimeric forms) are shown to be in complex with all

the three MASPs (MASP-1, MASP-2 and MASP-3) at the same

time (Dahl et al. 2001).

MAp44 and sMAP (MAp19): MAp44, expressed mainly in the

heart, is yet another splice variant of MASP1 gene. It however

does  not  have  a  serine  protease  domain.  It  competes  with

MASP-2 to bind to MBL and down-regulates lectin pathway

activation (Skjoedt  et  al.  2010,  Degn et  al.  2009).  sMAP, a

splice  variant  of  MASP2  gene,  also  lacks  a  serine  protease

domain and competes with MASP-2 to bind to MBL, thereby

down-regulating lectin pathway activation (Stover et al. 1999

,Takahashi et al.  1999).  It  was found to be in complex with

MASP-1 and trimeric form of MBL (Tateishi et al.  2011).

MBL-Host Interactions: MBL has been shown to bind directly

to apoptotic (and necrotic) cells, and facilitate clearance of these

cells by phagocytosis (Nauta et al. 2003, Ogden et al. 2001).

The  bound  MBL  on  apoptotic  cells  stimulate  ingestion  by

phagocyte by binding to calreticulin (cC1qR), which in turn is

bound to  the  endocytic  receptor  protein  CD91 (LRP-1,  α2-

macroglobulin  receptor)  (Eggleton  et  al.  1994).  Direct

interaction of MBL and CD91 has also been documnted (Duus

et al. 2010). MBL can also bind to complement receptor type 1

(CR1,  CD35)  and  C1qR  (CD93)  receptors  present  on

phagocytes (Ghiran et al. 2000, Malhotra et al. 1995). Therefore

MBL deficiency might lead to the accumulation of apoptotic

cells, thereby predisposing the host to systemic autoimmunity.

MBL  pathway  is  activated  upon  interaction  with  α
2
β
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(CD49/CD29)  integrin  in  mast  cells  (Edelson et  al.  2006).

MBL is responsible for activating complement on endothelial

cells following periods of oxidative stress. Oxidative stress

increases endothelial cytokeratin-1 (CK1) expression (Collard

et  al.  2001) and CK1 represents  a  candidate molecule as  a

MBL ligand under conditions of cell stress and injury (Collard

et  al.  2001,  Montalto  et  al.  2001).  Aberrant  glycosylation

patterns, like Lewis A and Lewis B (Lea–Leb), expressed on

glycoproteins CD26 and CD98 heavy chain of human tumor

cell lines derived from colon adenocarcinoma and colorectal

carcinoma respectively (Muto et al. 1999, Muto et al. 2001),

have  been  identified  as  ligands  for  MBL (Kawasaki  et  al.

2009). Furthermore, MBL has been implicated in activating

complement by binding to glycosylated immunoglobulin(Ig)G

isoforms associated with rheumatoid arthritis (Tenner et al.

1995), polymeric forms of IgA (Hisano et al. 2001, Roos et al.

2001, Terai et al. 2006) and certain glycoforms of IgM (Arnold

et al. 2005).

MBL-Pathogen Interactions:  MBL binds multiple  bacterial

polysaccharides having terminal monosaccharides such as D-

mannose, GlcNAc, ManNAc and L-fucose but not galactose

and sialic  acids  (which are  present  on host  cells)  (Weis  et

al.1992, Drickamer 1992).  In fact,  some pathogens use the

strategy of producing polysaccharide capsule and sialylation of

lipopolysaccharide structures to escape MBL binding (Jack et

al. 2001, Krarup et al. 2005). MBL has been shown to bind to

a wide range of bacteria, viruses, fungi and protozoa (Dommett

et  al.  2006).  However,  the  binding  of  MBL  to  pathogens

differs  both  between  and  within  species  (heterogeneous

binding patterns) (Townsend et al.  2001, Neth et al.  2000).

Teichoic  acid  of  Staphylococcus  aureus,  a  cell  surface

glycopolymer containing GlcNAc residue, has been shown to

be a functional ligand of MBL (Park et al. 2010). In addition to

Staphylococcal aureus,  several  bacterial  species have been

found  to  bind  to  MBL  including:  Actinomyces  israelii,

Bi f idobac te r ium  b i f i dum ,  Lep to t r i ch ia  bucca l i s ,

Proprionibacterium  acnes  (Townsend  et  al.  2001);

Burkholderia cepacia, Pseudomonas aeruginosa (Davies et al.

2000);  Chlamydia  pneumoniae  (Swanson  et  al.  1998);

Klebsiella aerogenes, Haemophilus influenzae, Streptococcus

pneumoniae,  Escherichia  coli,  Haemophilus  influenza,

Neisseria  meningitidis,  Listeria  monocytogenes,  (van

Emmeriket al. 1994, Neth et al. 2000); Mycobacterium avium

(Polotsky et al. 1997); Mycoplasma pneumonia (Hamvas et al.

2005);  and Salmonella  montevideo  (Kuhlman et  al.  1989).

Interestingly,  other  bacteria  (anaerobic)  that  are  most

commonly implicated in clinical disease such as, Bacteroides

and Clostridium, bound little or no MBL. Similarly, the only

Veillonella  species  that  causes  any appreciable  disease,  V.

parvula,  bound little or no MBL. In contrast, Vitellariopsis

dispar,  Bifidobacterium bifidum,  Propionibacterium acnes,

Leptotrichia  buccalis,  which  very  rarely  cause  significant

infections,  bound  to  MBL.  Also,  Fusobacterium,  a  rarely

isolated organism is bound to measurable amounts of MBL.

This  suggests  that  there  may  be  an  inverse  relationship

between  pathogenicity  and  the  level  of  MBL  binding

(Townsend et  al.  2001).  MBL can bind to  viruses  such as,

influenza A, HIV (Hartshorn et al. 1993, Saifuddin et al. 2000,

Hart et al. 2002, Ji et al. 2005), and severe acute respiratory

syndrome  (SARS)  coronavirus  (CoV)  (Ip  et  al.  2005).  A

number of clinical studies have suggested that deficiency of

MBL is a risk factor for acquiring HIV infection. MBL can

bind to purified HIV-gp120 which is likely the target of HIV

(Ezekowitz  et  al.  1989).  MBL can also  bind  to  Aspergillus

fumigatus, Candida albicans (Neth et al. 2000) and protozoans

such  as  Cryptosporidium  parvum  (Kelly  et  al.  2000);

Plasmodium  falciparum  (Klabunde  et  al.  2002)  and

Trypanosoma cruzi (Kahn et al.  1996),  to prevent infection.

PHENOTYPES

MBL2 gene (which encodes human MBL protein), along with

other collectins, is a part of tightly linked cluster of genes found

on the chromosome 10 (Guo et al. 1998). MBL deficiency is

inherited in an autosomal co-dominant manner (Pettigrew et al.

2009),  with  heterozygotes  having about  10% of  the  normal

functional level of MBL and homozygotes having less than 1%

functional levels of MBL (Hibberd et al. 1999) and affect the

serum concentration (Madsen et al. 1995, Madsen et al. 1998).

The point mutations (single nucleotide polymorphisms, SNPs),

three in exon 1 and two in promoter region of the MBL gene,

lead to a dramatic decrease in the serum concentration of MBL.

The  transcription  of  MBL2  is  regulated  by  two  alternative

promoters  (named  0  and  1)  where  promoter  0  derived

transcripts include an additional 5′ untranslated region (5'UTR)

encoded by an extra exon (exon 0). Low extra-hepatic levels of

MBL2 mRNA were predominantly found in small intestine and

testis tissue, and were quantitatively dominated by promoter 1

transcripts. Moreover, these transcripts varied due to the use of

alternative  acceptor  splice  sites  positioned  inside  exon  1

(Seyfarth  et  al.  2006).

Polymorphisms in Exon 1: The exon 1 mutations on the protein

product are believed to impair oligomerization and lead to a

functional  deficiency.  These  point  mutations  are  (now

commonly  referred  to  as  B,  C  and  D  alleles)  collectively

denoted  by  ‘O’,  with  variant  A  indicating  the  wild  type.

Variant B: A reported exon 1 mutation is at codon 54 in which

glycine  is  replaced  by  aspartic  acid  (GGC  to  GAC)  when

studying a Eurasian population with frequency of approximately

25% (Sumiya et al. 1991). This mutation was associated with

(most)  low  MBL  serum  levels,  opsonization  defect  and

recurrent  bacterial  infections.

Variant C: This exon 1 mutation is at codon 57 in which glycine

is replaced by glutamic acid (GGA to GAA), in a sub-Saharan

African population with frequencies of 50%–60% (Lipscombe

et al. 1992).

Variant  D:  This  exon  1  mutation  is  at  codon  52  in  which

arginine is replaced by cysteine (CGT to TGT) (Madsen et al.

1994). This extra cysteine has been proposed to cause formation

of adventitious disulphide bonds that hinder higher oligomer

formation (Wallis and Drickamer 1999).

Polymorphisms  in  promoter  region:  Since  exon  1

polymorphisms did not explain variations of MBL serum levels

sufficiently,  inter-individual  variation in serum MBL levels

revealed two polymorphisms (H/L and X/Y, at positions −550

and −221 respectively to transcription start site, TSS) in the

upstream promoter region of the MBL2 (Madsen et al. 1995).

The different combinations of these promoter polymorphisms

result  in  different  haplotypes,  HY,  LY,  and  LX,  with  high,

medium,  and  low  levels  of  MBL  serum  concentrations,

respectively. Later a polymorphism, P/Q variant, at 5′UTR of

the gene (part of Exon 1) was also identified (Madsen et al.

1998) which is also associated with low levels of serum MBL.

Promoter polymorphisms and the exon 1 mutations cluster in a

pattern of linkage disequilibrium (Garred 2008, Verdu et al.

MOLECULE PAGE

Volume 2,Issue 1, 2013 10



2006, Bernig et al. 2004).

The  impact  of  the  variations  in  MBL genotypes  or  serum

concentrations  on  different  human  diseases  has  been

intensively studied (disease association studies) (Sumiya et al.

1991, Kilpatrick 2002, Eisen and Minchinton 2003, Turner

2003).  MBL  deficiency  is  associated  with  an  increased

susceptibility to infection with Neisseria meningitidis (Bathum

et al. 2006), and severity of atherosclerotic disease (Madsen et

al.  1998).  The  recent  findings  have  shown  a  correlation

between  MBL  deficiency  and  Pseudomonas  infections  in

cystic  fibrosis  patients,  suggesting  that  MBL is  inherently

involved in clearance of potential pathogens in the body. MBL

binding  may  facilitate  the  uptake  of  Mycobacterium  by

macrophages,  thereby  promoting  infection.  In  contrast,

presence of mutant alleles, which may lead to MBL deficiency,

may convene a protective role against tuberculosis (TB) (Cosar

et al.  2008, Thye et al.  2011, Singla et al.  2012). However,

certain polymorphisms in MBL2 contribute to development of

TB in HIV patients (Raghavan et al.  2012, Alagarasu et al.

2007). MBL polymorphisms may also lead to systemic lupus

erythematosus  (Davies  et  al.  1995),  Alzheimer's  disease

(Sjölander et al. 2013) and pulmonary disease in cystic fibrosis

(Gabodle  et  al.  1999).  MBL  function  may  play  a  role  in

survival of kidney graft patients (Bay et al. 2013, Damman and

Seelen 2013).

MAJOR SITES OF EXPRESSION

MBL is synthesized in the liver and circulates in the serum

(Wild et al. 1983). However, extra-hepatic expression of MBL

also  observed  (Nonaka  et  al.  2007).  The  expression  of

functional MBL peptide is largely genetically determined (see

‘Phenotypes’ section). MBL is considered as an acute phage

reactant protein (serum levels increases during inflammation)

(Ezekowitz et al.  1988) (see ‘Regulation of Concentration’

section). However,unlike other lectin proteins which increase

drastically, MBL increases only 2-3 fold.

SPLICE VARIANTS

MBL2  gene  (which  encodes  MBL  protein)  is  located  on

chromosome 10 (q11.2-q21) (Guo et al. 1998) with four exons

and three introns. The gene encodes two major transcripts by

alternative  transcription,  resulting  in  different  lengths  of

mRNA transcripts. Transcription may initiate either at exon 1

or at an additional, non-coding 1kb upstream located, exon 0

(Naito et al. 1999, Sastry et al. 1989, Taylor et al. 1989). It is

assumed that 10–15% of MBL in serum derives from exon ‘0’

transcription (Heitzeneder et al.  2012). Exon 1 encodes the

signal peptide, a cysteine-rich region and part of the glycine-

rich collagenous region, exon 2 encodes the remainder of the

collagenous region, exon 3 encodes an α-helical coiled-coil

structure, which is known as the ‘neck’ region, and exon 4

encodes  the  CRD,  which  adopts  a  globular  configuration

(Wallis  et  al.  2004,  Madsen et  al.  1995,  Weis  et  al.  1992,

Wallis 2007). The promoter region of the MBL gene contains a

number of regulatory elements, which affect transcription of

the protein (Dommett et al. 2006). Both, exon ‘0’ and exon 1,

promoter  regions  possess  a  TATA  box  for  transcription

initiation. In both, the binding sites for transcription factors

include response elements to IL-6 . This finding was assumed

to underlie the regulation of MBL synthesis as an acute phase

protein. In addition, the promoter region of exon 1 comprises a

glucocorticoid  responsive  element  (Gabolde  et  al.  1999).

However,  human  MBL1  gene  is  a  pseudogene.

REGULATION OF CONCENTRATION

MBL serum levels are relatively constant in an individual and

may  increase  2–3  folds  upon  infections  and  inflammatory

challenges (Thiel et al. 1992). The level of MBL in plasma is

genetically  determined,  and  deficiency  is  associated  with

frequent infections in childhood, and possibly also in adults

(Turner  1996).  Large  molecular  mass  complexes  (200–700

kDa) of MBL circulate in serum, which are probably stabilized

by interaction through the cysteine-rich, amino-terminal regions

of  adjacent  trimeric  subunits  (Lipscombe  et  al.  1995).  The

serum concentration of MBL varies, from 0 to 10 μg/ml with a

median around 1 μg/ml (Saevarsdottir et al. 2001, Steffensen et

al. 2000, Minchinton et al. 2002). Recently, using antibodies of

human collectin kidney 1 (COLEC11) (Yoshizaki et al. 2012)

the MBL concentration in blood was established as 1.72 ± 1.51

μg/ml. Enzyme-linked immunosorbent Assays (ELISAs) was

used to measure MBL concentration in cerebrospinal fluid was

found to be 0.0016-0.056 μg/ml (Kwok et al. 2012). Low levels

of MBL (< 1 μg/ml) are mostly caused by three point mutations

in exon 1 of  the MBL gene (in  codons 52,  54,  and 57)  that

disrupt the assembly of the oligomers, and also by a promoter

polymorphism that is associated with low MBL production (see

‘Phenotypes’ section). The combination of structural gene and

promoter polymorphisms results in a dramatic variation in MBL

concentration in apparently healthy individuals of up to 1000-

fold  (Ezekowitz  et  al.  1988).  Non-genetic  factors  affecting

MBL serum levels include age and hormones. MBL levels vary

with  age,  increase  within  the  first  months  of  life  and

subsequently decline (Aittoniemi et al. 1996, Sallenbach et al.

2011,  Lau  et  al.  1995,  Sørensen  et  al.  2006).  Thyroid  and

growth hormones have a significant effect on regulating MBL

synthesis  (Frakking  et  al.  2006,  Riis  et  al.  2005).  Human

population studies have shown that high levels of MBL (>1

mg/ml)  were  associated  with  a  greatly  decreased  risk  of

myocardial infraction (MI) in hypercholesteromic individuals

(Saevarsdottir et al. 2005).

ANTIBODIES

MBL antibodies are available from the following companies:

EMD Millipore  Corporation,  R&D Systems,  Inc.,  OriGene

Technologies, Inc.,  GenScript USA Inc.,  Novus Biologicals,

Epitomics Inc.,  Uscn Life Science Inc.,  Hycult Biotech etc.
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Table 1: Functional States

STATE DESCRIPTION LOCATION REFERENCES
MBL (native) extracellular region
3MBL (structural, monomer) extracellular region Sheriff S et al. 1994; Lu JH et al. 1990

2(3MBL) (dimer) extracellular region Dahl MR et al. 2001; Sheriff S et al. 1994

3(3MBL) (trimer) extracellular region Dahl MR et al. 2001; Sheriff S et al. 1994

3(3MBL)/MASP-1/sMAP extracellular region Stover CM et al. 1999; Takahashi M et al. 1999; Tateishi K et al. 2011;
Gregory LA et al. 2004

3(3MBL)/MAp44 extracellular region Skjoedt MO et al. 2010; Skjoedt MO et al. 2012; Degn SE et al. 2009;
Skjoedt MO et al. 2011

4(3MBL) (tetramer) extracellular region Dahl MR et al. 2001

4(3MBL)/MASP-1/MASP-
2/MASP-3

extracellular region Dahl MR et al. 2001; Sekine H et al. ; Wallis R et al. 2007

5(3MBL) (pentamer) extracellular region Dahl MR et al. 2001

5(3MBL)-Zymosan extracellular region Lu JH et al. 1990

5(3MBL)/MASP-1/MASP-
2/MASP-3

extracellular region Dahl MR et al. 2001; Sekine H et al. ; Wallis R et al. 2007

6(3MBL) (hexamer) extracellular region Dahl MR et al. 2001

6(3MBL)/cC1qR extracellular region Eggleton P et al. 1994; Ogden CA et al. 2001

6(3MBL)/CD91 plasma membrane Duus K et al. 2010

6(3MBL)/cC1qR/CD91 plasma membrane Eggleton P et al. 1994; Ogden CA et al. 2001

6(3MBL)/α2β1 plasma membrane Edelson BT et al. 2006

6(3MBL)/CR1 plasma membrane Ghiran I et al. 2000

6(3MBL)/CK1 extracellular region Collard CD et al. 2001

6(3MBL)/CD93 plasma membrane Tenner AJ et al. 1995

6(3MBL)/IgA extracellular region Roos A et al. 2001; Royle L et al. 2003; Terai I et al. 2006

6(3MBL)/IgG extracellular region Malhotra R et al. 1995

6(3MBL)/IgM extracellular region Arnold JN et al. 2005; McMullen ME et al.

6(3MBL)/LDL extracellular region Fraser DA and Tenner AJ 2010

6(3MBL)-GlcNAc extracellular region Weis WI et al. 1992; Drickamer K et al. 1992

6(3MBL)-LTA extracellular region Park KH et al. 2010

6(3MBL)/SALSA(gp340) extracellular region Reichhardt MP et al.

6(3MBL)/(Decorin/Biglycan) extracellular region Groeneveld TW et al. 2005

6(3MBL)/gp120 (HIV) extracellular region Haurum JS et al. 1993; Ji X et al. 2005; Hart ML et al. 2002; Senaldi G
et al. 1995; Saifuddin M et al. 2000

6(3MBL)/CD45 plasma membrane Baldwin TA and Ostergaard HL 2001

6(3MBL)/CD26 plasma membrane Kawasaki N et al. 2009

6(3 MBL)/MASP-1/MASP-
2/MASP-3

extracellular region Héja D et al. 2012; Héja D et al. 2012; Sekine H et al. ; Wallis R et al.
2007; Dahl MR et al. 2001

6(3MBL)/MASP-
1(active)/MASP-2/MASP-3

extracellular region Fujita T et al. 2002

6(3MBL)/MASP-
1(active)/MASP-
2(active)/MASP-3

extracellular region Héja D et al. 2012
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