UCLA

Posters

Title Fidelity Driven Sampling in Environmental Sensing

Permalink

https://escholarship.org/uc/item/6pv5x5xf

Authors

Mohammad Rahimi Mark Hansen William Kaiser <u>et al.</u>

Publication Date

2004

S Center for Embedded Networked Sensing

Fidelity Driven Sampling in Environmental Sensing

Mohammad Rahimi, Mark Hansen, William Kaiser, Gaurav Sukhatme, steve liu ,Deborah Estrin e-mail: mhr@cens.ucla.edu`

Exploiting Mobility to achieve High fidelity Environmental Sensing

Motivation

- Networked Infomechanical Systems - Mobility for application science
 - Extended visibility using motion
- Interaction of static sensor
- network and mobile sensor network
- Sensing close to the phenomena

Why is it Important?

- Environmental Science
- Habitat monitoring
- Example
 - Aging in forests
 - CO2 Respiration
 - Global warming at microclimate level
 - Comparison of different forests (ex. Oxygen generation)

Approach: Fidelity Driven Sampling to Create a Dynamic Model of the Environment

Goal

- · Represent our knowledge in a mathematical model
- Actively build a model
- · Optimize the trade-off
 - Spatial resolution, - temporal resolution
 - spatial coverage.

Approach

- Minimize the *integrated squared error* - sample the phenomenon in regions of high curvature
- · Use prior knowledge of the phenomenon or a coarse estimate to identify regions that
 - need higher resolution - Nearest-neighbor weights are used for the local polynomial fit; the
 - Bandwidth for our estimator decreases as we take more measurements in a region

System Prototype and Simulation Results

Simulation Results

Evaluated subjecting to representative cases

•For reduced curvature,

- Fidelity Driven Sampling adaptively converge to a specified mean squared error
- It is equal or superior to raster scanning in *efficiency* with respect to numbers of sample points

Experiments with light

• Generating light patterns in lab •Close to reality Static •Having Ground-truth

Software Architecture

- •Using statistical tools in motion
- •Moving from simulation to real time in statistical environment
- •Rapid prototype algorithm
- •Using the tools for environmental science

Future Work

- Temporal analysis of the scheme
- Utility of the motion Statistical error System delay
- Using Fidelity Driven Sampling in the field
- Use *Bayesian* approach to represent our previous knowledge

UCLA - UCR - Caltech - USC - CSU - JPL - UC Merced