Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Knowledge-based three-dimensional dose prediction for tandem-and-ovoid brachytherapy.

Abstract

Purpose

The purpose of this work was to develop a knowledge-based dose prediction system using a convolution neural network (CNN) for cervical brachytherapy treatments with a tandem-and-ovoid applicator.

Methods

A 3D U-NET CNN was utilized to make voxel-wise dose predictions based on organ-at-risk (OAR), high-risk clinical target volume (HRCTV), and possible source location geometry. The model comprised 395 previously treated cases: training (273), validation (61), test (61). To assess voxel prediction accuracy, we evaluated dose differences in all cohorts across the dose range of 20-130% of prescription, mean (SD) and standard deviation (σ), as well as isodose dice similarity coefficients for clinical and/or predicted dose distributions. We examined discrete Dose-Volume Histogram (DVH) metrics utilized for brachytherapy plan quality assessment (HRCTV D90%; bladder, rectum, and sigmoid D2cc) with ΔDx=Dx,actual-Dx,predicted mean, standard deviation, and Pearson correlation coefficient further quantifying model performance.

Results

Ranges of voxel-wise dose difference accuracy (δD¯±σ) for 20-130% dose interval in training (test) sets ranged from [-0.5% ± 2.0% to +2.0% ± 14.0%] ([-0.1% ± 4.0% to +4.0% ± 26.0%]) in all voxels, [-1.7% ± 5.1% to -3.5% ± 12.8%] ([-2.9% ± 4.8% to -2.6% ± 18.9%]) in HRCTV, [-0.02% ± 2.40% to +3.2% ± 12.0%] ([-2.5% ± 3.6% to +0.8% ± 12.7%]) in bladder, [-0.7% ± 2.4% to +15.5% ± 11.0%] ([-0.9% ± 3.2% to +27.8% ± 11.6%]) in rectum, and [-0.7% ± 2.3% to +10.7% ± 15.0%] ([-0.4% ± 3.0% to +18.4% ± 11.4%]) in sigmoid. Isodose dice similarity coefficients ranged from [0.96,0.91] for training and [0.94,0.87] for test cohorts. Relative DVH metric prediction in the training (test) set were HRCTV ΔD¯90±σΔD = -0.19 ± 0.55Gy (-0.09 ± 0.67 Gy), bladder ΔD¯2cc±σΔD = -0.06 ± 0.54Gy (-0.17 ± 0.67 Gy), rectum ΔD¯2cc±σΔD= -0.03 ± 0.36Gy (-0.04 ± 0.46 Gy), and sigmoid ΔD¯2cc±σΔD = -0.01 ± 0.34Gy (0.00 ± 0.44 Gy).

Conclusions

A 3D knowledge-based dose predictions provide voxel-level and DVH metric estimates that could be used for treatment plan quality control and data-driven plan guidance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View