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ABSTRACT OF THE DISSERTATION

Simple Lie Algebras, Algebraic Prolongations and Contact Structures

by

Orest Bucicovschi

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Nolan R. Wallach, Chair

The story starts with the result of Mukai that every complex simple finite di-

mensional Lie algebra has a faithful realization as a subalgebra of an algebra of

polynomials with the Legendre bracket. Every such realization is determined by a

unique polynomial of degree 4. This generalizes the result of Cartan that found a

14-dimensional vector space of polynomials in 5 variables which is a Lie algebra of

type G2 with respect to the Legendre bracket.

To prove his result Mukai uses the notion of algebraic prolongation of a nega-

tively graded Lie algebra. He observes that the algebraic prolongation of a graded

Heisenberg Lie algebra of dimension 2d + 1 is the algebra of polynomials in 2d + 1

variables with the Legendre bracket.

We present a different approach to Mukai’s result by using the geometry of

generalized flag varieties and coadjoint orbits. We made the connection between

the embedding of the simple Lie algebras into the Legendre algebra and the contact

structure on the minimal nilpotent orbit on of the simple algebra. The existence

is due to the fact that the big cell of the minimal orbit is a Heisenberg group and

the contact structure has a canonical representative 1-form over it.

We show that the polynomial of degree 4 determining the embedding is up

to a precisely determined factor the generator of the algebra of invariants of a

particular representation considered by Wallach and Gross [GW96] in connection

with quaternionic real forms of complex Lie algebras (the so called invariant of

x



degree 4). This invariant of degree 4 is also used by Wallach [Wal03] in the study

of quaternionic discrete series, where an element is generic precisely when the

invariant does not vanish at it.

We provide a complete proof of the result of Tanaka that the algebraic prolon-

gation of the negative graded Heisenberg is the Legendre algebra using results on

cohomology of Lie algebras by Wallach.

We interpreted the Legendre algebra as a dual Verma module and provided an

intrinsic reason for the existence of the multiplicative structure. Moreover, we give

a uniform description of the algebraic prolongation of a class of negatively graded

algebras.

Related to the invariant of degree 4, we show, using results of Kac-Popov and

Sato-Kimura that the situation arising from the minimal nilpotent orbit is the only

one of a symplectic representation with a free algebra of invariants.

Boothby proved the converse that every complex compact simply connected

homogenous contact manifold is the projectivized minimal nilpotent orbit of a

unique complex simple Lie algebra. We give a new simplified proof of Boothby’s

result. Moreover we give a description of homogenous contact manifolds, relating

them to nilpotent orbits.

We mention that there is an overlap of some of our results with results of

Landsberg, see [Lan08], [LR07].
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1 Introduction- Description of

the result of Mukai

We will be studying questions in Lie algebras, Lie groups and contact geometry.

The background on Lie algebras and Lie groups comes mostly from [Ser06], [Ser01].

For contact and symplectic structures we refer to [MS04].

In [Muk98] Mukai proved that every simple Lie algebra over the complex num-

bers can be realized as a subalgebra of an algebra of polynomials with the Legendre

bracket. This generalizes a result of Cartan that found a 14 dimensional subspace

of an algebra of polynomials in 5 variables with the Legendre bracket.

In this chapter we describe the result of Mukai. The Legendre algebra and the

notion of algebraic prolongation is introduced.

In chapter 2 we introduce the notion of contact structure. The Legendre algebra

naturally arises from a contact structure on the Heisenberg group.

In chapter 3 we study homogenous contact complex manifolds. We show that

the minimal projectivized nilpotent orbit in a simple Lie algebra has a contact

structure. Boothby showed conversely that every compact simply connected ho-

mogenous contact manifold is the projectivized minimal orbit of a unique complex

simple Lie algebra. We give a new simplified proof of Boothby’s result. Moreover

we give a general description of homogenous contact manifolds relating them to

nilpotent orbits.

In chapter 4 we show that the polynomial of degree 4 determining the em-

bedding is the same polynomial of degree 4 considered by Wallach and Gross in

connection with quaternionic real forms of simple complex Lie algebras ( the so

called invariant of degree 4). Related to the invariant of degree 4 we show using

1
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result of Brion and Popov that the situation arising from the minimal nilpotent

orbit is the only one of a symplectic representation with a free algebra of invariants.

In chapter 5 we interpret the Legendre algebra as a dual Verma module and

provide an intrinsic reason for the existence of the multiplicative structure. Using

results on cohomology of Lie algebras of Wallach we give a uniform description of

the algebraic prolongation of a class of negatively graded algebras.

1.1 The Longest Root

1.1.1 Existence

For background on root systems we recommend [Bou02]. We also follow the

material from [GW96].

Let R a reduced root system on the vector space V . Let B = {α1, . . . , αl} a

basis of R. We know that every positive root has an expression

α =
l
∑

i=1

mi(α)αi (1.1)

where mi(α) are natural numbers depending on α.

Assertion: There exists a positive root

β =
∑

mi(β)αi (1.2)

such that

mi(β) ≥ mi(α) (1.3)

for all 1 ≤ i ≤ l. To show this consider a root β maximal with respect to the order

� defined as follows: For α, α′ in R, α � α′ if

mi(α) ≥ mi(α
′) (1.4)

for all i. We will show that any other maximal root in fact equals β. That will

prove that β is the largest element for this order.
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Let (·, ·) a positive definite bilinear form on V invariant under the Weyl group

of the root system. For instance take

(v1, v2) : =
∑

α∨∈R̂

α∨(v1) · α
∨(v2) (1.5)

where R̂ ⊂ V ∗ is the dual root system. Such an invariant form is unique up to

multiplication by a scalar since R is an irreducible root system.

Recall that if for two roots α, β if (α, β) < 0 then α + β is a root. It follows

that

(β, αj) ≥ 0 (1.6)

for all j.

Consider the expansion

β =

n
∑

i=1

mi(β)αi (1.7)

We show first that mi(β) > 0 for all i. Assume the contrary. We have thus a

nontrivial partition {1, . . . , n} = {i |mi(β) > 0} ∪ {i |mi(β) = 0}

Let j such that mj(β) = 0. Recall that for any two distinct basic roots αi, αj

we have

(αi, αj) ≤ 0 (1.8)

We have now

(β, αj) =
∑

mi>0

mi(β)(αi, αj) ≤ 0 (1.9)

with equality if and only if (αi, αj) = 0 for all i such that mi(β) > 0. Because

of (1.6) we conclude we have indeed equality. Therefore (αi, αj) = 0 for all i, j

such that mi(β) > 0 and mj(β) = 0. But that means that the root system R is

reducible, contradiction.

Now consider another maximal root γ. Again, like for β, we have mi(γ) > 0

We will end up showing that γ = β. Indeed, we have again like in (1.6)

(γ, αi) ≥ 0 (1.10)
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for all i. Since the αi’s generate the full vector space and the bilinear form (, ) is

nondegenerate at least one of the inequalities above is strict. But then it follows

(γ, β) =

l
∑

i=1

mi(γ, αi) > 0 (1.11)

We now conclude γ = β or β − γ is a root. The second possibility implies γ � β

or β � γ, which is not the case, since β, γ are maximal. Conclude γ = β.

Thus, β is the largest element.

1.1.2 Basic Properties

Let β =
∑l

i=1 miαi be the largest root, as above. Let α =
∑l

i=1 niαi be another

root. We have

(β, α) =
n
∑

i=1

ni(β, αi) (1.12)

Since as before (β, αi) ≥ 0 for all i we conclude :

(β, α) = 0 if and only if (β, αi) = 0 for all i such that ni 6= 0.

Let’s normalize the scalar product (·, ·) such that (β, β) = 2. This determines

uniquely the invariant scalar product (·, ·). Let β∨ the dual root of β. We have

then for any α root

α(β∨) =
2(β, α)

(β, β)
= (β, α) (1.13)

Again like in (1.12) we have

(β, α) =
n
∑

i=1

ni(β, αi) ≤
n
∑

i=1

mi(β, αi) = (β, β) (1.14)

We now show that

(α, α) ≤ (β, β) (1.15)

There exists (a unique) w in the Weyl group of R such that wα is in positive

chamber C. Since w is an isometry (wα, wα) = (α, α) so we may assume α itself

is in the positive chamber, that is (α, αi) ≥ 0 for all i. We have thus:

(α, α) =
n
∑

i=1

ni(α, αi) ≤
n
∑

i=1

mi(α, αi) = (α, β) (1.16)
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From (1.14) and (1.16) it follows that (α, α) ≤ (β, β). This is true for all roots

α. Thus β can also be called the longest root. An observation is in place. An

invariant scalar product on V is unique up to isomorphism. So we can partition

the set of roots into ”equal length” subsets. It turns out that the Weyl group of

R acts transitively on the subsets of equal length. If α is a root largest length

then there exists a unique ordering of R such that α is in the positive chamber

associated with this order. Then α will be the longest root for this ordering, in

the sense above. So the condition is : in the positive chamber and (α, α) longest.

For simply laced root system β is characterized as the only root in the positive

Weyl chamber. The example of the root system of type G2 shows this is not true

in general.

For any α root we have

α(β∨) =
2(β, α)

(β, β)
= (β, α) (1.17)

Now we have

(β, α)2 ≤ (β, β) · (α, α) (1.18)

and

(α, α) ≤ (β, β) (1.19)

and so

|α(β∨)| = |(β, α)| ≤ (β, β) = 2 (1.20)

with equality if and only if α = ±β. Moreover β∨(α) is an integer. We conclude

that

α(β∨) = (β, α) ∈ {−1, 0, 1} (1.21)

for all roots α different from ±β.

Moreover, α(β∨) , β(α∨) are integers of the same sign and if α is not propor-

tional to β their product is at most 3. We conclude that β̂(α) = (β, α) ∈ {−1, 0, 1}

. Therefore, if (β, α) = 1 then α is positive and β −α is again a positive root with

(β, β − α) = 1.

Let ρ = 1
2

∑

α∈R+ ∈ V half the sum of the positive roots. Since for every basic

root αi we have sαi
(ρ) = ρ − αi we have

(ρ, αi) =
(αi, αi)

2
, i = 1, 2, . . . l (1.22)
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In particular we have

(ρ, β) =
1

2

l
∑

i=1

mi(β) · (αi, αi). (1.23)

The following is a result from [GW96], Prop. 1.3.

Proposition 1.1.1. (1) If α ∈ R+ then (α, β) ∈ {0, 1, 2}. If (α, β) = 2 then

α = β.

(2) Let Σ+ : = {α ∈ R+ | (α, β) = 1}. Then α 7→ β −α gives a fixed-point free

involution of Σ+. In particular the number of elements of Σ+ is even = 2d.

(3) We have (ρ, β) = d + 1 where d is the integer defined above.

Proof. Parts (1) and (2) are proved above. For (3) consider

ρ =
1

2





∑

α∈R+,(α,β)=0

α +
∑

α∈Σ+

α + β



 (1.24)

Therefore we have

(ρ, β) =
1

2
Card (Σ+) +

1

2
(β, β) = d + 1 (1.25)

Now using (1.23) we can determine the integer d for all the types of irreducible

(reduced) root systems using the tables from [Bou02] Planches. One checks that

if R is simply laced then d = h − 2 where h is the Coxeter number of g.

1.1.3 The Parabolic Subset

As before, R is an irreducible root system with a choice of a basis and hence

of a positive part R+. Let β the largest root of R ( see the previous subsection).

Consider the subset of R defined as

P = {α ∈ R | (β, α) ≥ 0} (1.26)

It is clearly closed under addition and P ∪ (−P) = R, so P is a parabolic subset

of R. It can also be defined as follows: Consider the partition B = {α1, . . . , αn} =

{αi | (β, αi) = 0}∪{αi | (β, αi) = 0} = B0∪B1. Then P consists of all the positive
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Table 1.1: The integer d for different root systems

R d

Al l ≥ 1 l − 1

Bl l ≥ 2 2l − 3

Cl l ≥ 3 l − 1

Dl l ≥ 4 2l − 4

G2 2

F4 7

E6 10

E7 16

E8 28

roots and of the negative combinations of basic roots in B0. One inclusion is clear.

Conversely, let α such that (β, α) ≥ 0. Assume that ni < 0 for some i such that

with (β, αi) > 0. Then α is a negative root and all the coefficients are ≤ 0. But

then using also (1.6) we get (β, α) < 0, contradiction.

1.2 The Heisenberg Parabolic

1.2.1 The Setup

Let g a finite dimensional simple Lie algebra over C, h a Cartan subalgebra of g

and R the root system of g with respect to h. We have the root space decomposition

of g

g = h ⊕
⊕

α∈R

gα (1.27)

Let b a Borel subalgebra of g containing h. Let B = {α1, . . . , αl} the positive basis

associated with b.
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1.2.2 Standard Parabolic Subalgebras

The conjugacy classes of parabolic subalgebras of g are in 1−1 correspondence

with parabolic subalgebras of g containing the subalgebra b. Now any Lie subal-

gebra p of g containing b is given by a unique parabolic subset P of R containing

the subset of positive roots R+.

p = h ⊕
⊕

α∈P

gα (1.28)

The parabolic subsets of R can be characterized as subsets P of R that are closed

under addition ( α, β ∈ P and α + β ∈ R implies α + β ∈ P ) and such that

P ∪ (−P) = R – see [Bou02]. Now the parabolic subsets of R that contain R+ are

in 1 − 1 correspondence with partitions

B = B0 ∪ B1 (1.29)

as follows. Let P the subset of R defined by

P = {α ∈ R | α =
∑

niαi such that ni ≥ 0 for all i with αi ∈ B1 } (1.30)

Then P is a parabolic subset of R. It can also be characterized as

P = R+ ∪ {negative combinations of elements of B0} (1.31)

Then p is given by

p = h ⊕
⊕

α∈P

gα (1.32)

Consider now the partition P = Pl ∪ Pn where

Pl = {α ∈ P | ni = 0 for all αi ∈ B1} (1.33)

and

Pn = {α ∈ P | ni > 0 for some αi ∈ B1} (1.34)

We have the Levi decomposition of p

p = l ⊕ n (1.35)
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where

l = h ⊕
⊕

α∈Pl

gα (1.36)

is a Levi component of p and

n =
⊕

α∈Pn

gα (1.37)

is the nilpotent radical of p.

1.2.3 The Existence of the Heisenberg Parabolic

For the definition of Heisenberg Lie algebra and Heisenberg Lie group see

(3.5.1).

The Lie algebra g is simple. So its root system R is irreducible. Consider β

the longest root of R with respect to the basis B. Let B = B0 ∪B1 the associated

partition

B0 = {αi ∈ B | (β, αi) = 0} (1.38)

B1 = {αi ∈ B | (β, αi) > 0} (1.39)

Except for R of type A1, when β is the unique positive root we have

B1 = {αi ∈ B | (β, αi) = 1} (1.40)

We have the associated parabolic subset P ⊂ R with

P = {α ∈ R | (β, α) ≥ 0} (1.41)

Let

p = h ⊕
⊕

α∈P

gα (1.42)

the standard parabolic subalgebra coresponding to P . The partition of P that

determines the Levi decomposition of p is

P = {α ∈ R | (β, α) = 0} ∪ {α ∈ R | (β, α) > 0} (1.43)
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The Levi decomposition of p is therefore

p =



h ⊕
⊕

(β,α)=0

gα



⊕





⊕

(β,α)>0

gα



 (1.44)

Consider the element β∨ in [gβ, g−β] such that β(β∨) = 2. β∨ can be considered

as the dual root of β, that is β̂. Now ad(β∨) acts semisimply on g and we have the

decomposition:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (1.45)

where gi = {X ∈ g | ad(β∨)(X) = iX}. Thus g becomes a graded Lie algebra.

Moreover we have for the parabolic subalgebra defined above

p = (g0) ⊕ (g1 ⊕ g2) (1.46)

as its Levi decomposition

Let’s show that the nilpotent radical of p which is n = g1 ⊕ g2 is a Heisenberg

Lie algebra. Indeed let α a root, α 6= β and (α, β) > 0. Then β −α is again a root

and (β − α, β) = 1. We have [gα, gβ−α] = gβ . Moreover, [gβ , gα] = 0 for all roots

α in P1 and so gβ is the center of n.

Note that the Heisenberg parabolic p can be characterized as

p = {X ∈ g | [X, Xβ] ∈ C · Xβ} (1.47)

1.2.4 The Uniqueness of the Heisenberg Parabolic

Let p a standard parabolic subalgebra such that the nilpotent radical of p is a

Heisenberg algebra. We will show that p is given by the construction above.

Indeed, let first p an arbitrary parabolic. Since sup(β) = R+ we have gβ ⊂ n,

the nilpotent radical of p. Moreover, β + α is not a root for any positive root α,

in particular for any root α in Pl. We conclude that gβ is contained in the center

of n for every standard parabolic subalgebra p.

Assume moreover that n is Heisenberg. Then the center of n is exactly gβ. Let

now α, α′ in Pn. We have therefore [gα, gα′

] ⊂ gβ. It follows that for all α, α′ in

Pn we have α+α′ = β or α+α′ is not a root, that is [gα, gα′

] = gβ or [gα, gα′

] = 0.
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Moreover, since for every α ∈ Pn\{β} we have gα is not in the center of n there

exists α′ in Pn such that α + α′ = β. Conclude : For every α in Pn\{β} we have

β − α (also a root and) in Pn.

Now recall that for any positive root α that is not β we have α(β∨) = (β, α) ∈

{0, 1}. Also, if α and β−α are positive roots then (β, α)+(β, β−α) = (β, β) = 2.

It follows that both (β, α) and (β, β − α) equal 1. We conclude : Pn\{β} ⊂

{α | (β, α) = 1}

We’ll prove now the opposite inclusion. Let α with (β, α) = 1. Then α′ : =

β−α is again a positive root and α+α′ = β. Now α and α′ are positive roots and

so sup(α) ∪ sup(α′) = sup(α + α′) = sup(β) = R+. It follows that at least one of

α, α′ are in P1. But by the above, if α is in Pn then also α′ is (and the same for

α′). We conclude that in any case α is in Pn.

We conclude : P = {α ∈ R | (β, α) = β∨(α) ≥ 0} and hence p is unique.

1.2.5 The case of complex simple Lie groups

Let G a complex connected simple Lie group. Its Lie algebra g is a complex

simple Lie algebra. A parabolic subgroup P of G is called a Heisenberg parabolic

if its unipotent radical H is a Heisenberg Lie group. Since Lie(H) = n where n

is the nilpotent radical of p = Lie(P ) it follows that a parabolic subgroup of G

is Heisenberg parabolic if and only if its Lie algebra is Heisenberg parabolic. By

the existence and uniqueness result above, there exists a unique up to conjugacy

Heisenberg parabolic subgroup P of G.

1.3 The algebraic prolongation of the

Heisenberg algebra

1.3.1 Algebraic prolongation

The notion of algebraic prolongation was introduced by Tanaka [Tan70]

Let n = ⊕i<0ni a negatively graded Lie algebra. Then there exists a Z-graded

Lie algebra C(n), called the algebraic prolongation of n and a morphism of neg-
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atively graded Lie algebras n → C(n)<0 with the following property: For every

Z-graded Lie algebra g = ⊕i∈Zgi and a morphism of graded Lie algebras

n → g<0 (1.48)

there exists a unique extension

g → C(n) (1.49)

to a morphism of Z-graded Lie algebras

n //

!!B
BB

BB
BB

BB
C(n)

g

∃!

OO
(1.50)

1.3.2 Construction

The construction under the additional hypothesis that n is generated by n−1 and

the centralizer of n−1 in n equals nlowest degree ( this is what Tanaka calls ”regular”)(

NOTE: Weaker hypothesis are possible- However we are mostly interested in the

case n = negatively graded Heisenberg). In this case the map n → C(n)<0 is an

embedding.

C(n) is constructed inductively as follows : First, define

n0 = Graded derivations of n. Assume that we have built already n0, n1,. . . nm

and the bilinear brackets [X, Y ] for X ∈ n and Y ∈ n ⊕l≤m nl. Then define

nm+1 : = {Linear maps of degree m + 1φ : n → ⊕l≤mnl such that φ([X, Y ]) =

[φX, Y ] + [X, φY ] for all X, Y ∈ n}

Moreover, define the bracket [X, Y ] for X ∈ n, Y ∈ nm+1 as [X, Y ] = −Y (X)

( recall that Y is a linear map as above!).

We have defined C(n) as a vector space. We define now the brackets for X ∈ nm,

Y ∈ nn as the linear map given by [[X, Y ], Z] = [[X, Z], Y ] + [X, [Y, Z]] for all

X ∈ nm, Y ∈ nn and Z ∈ n. This is done by induction on m + n, taking into

account that the bracket is already defined for m, n negative integers.

One notices that at each step the grade is taken care of. Moreover, one checks

that with this bracket C(n) becomes a Lie algebra and that is has the universal

property stated above.
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1.3.3 The Legendre Algebra

We define the Legendre algebra in 2d + 1 variables to be the Lie algebra of

polynomials L = Ld = C[z, q1, . . . , qd, p1, . . . , pd] with the Legendre bracket for

bracket. The Legendre bracket of two functions f(z, q, p) and g(z, q, p) is given by

{f, g} = (f − Epf)
∂g

∂z
− (g − Epg)

∂f

∂z
+ (f, g) (1.51)

where Ep is the Euler operator with respect to the p variables

Epf =
n
∑

i=1

pi
∂f

∂pi

(1.52)

and (f, g) is the Poisson bracket with respect to the variables (qi, pi)

(f, g) =

d
∑

i=1

(

∂f

∂qi

∂g

∂pi
−

∂g

∂qi

∂f

∂pi

)

(1.53)

Equivalently we have

{f, g} = f
∂g

∂z
− g

∂f

∂z
+

d
∑

i=1

(

df

dqi

∂g

∂pi
−

dg

dqi

∂f

∂pi

)

(1.54)

where
d

dqi
=

∂f

dqi
+ pi

∂

∂z
(1.55)

Some particular cases:

{f, 1} = −
∂f

∂z
(1.56)

{f, qi} = −qi
∂f

∂z
−

∂f

∂pi

{f, pi} =
∂f

∂qi

(1.57)

{f, z} = f − Epf − z
∂f

∂z

1.3.4 The Grading

Note that Ld is also an associative algebra for the usual multiplication of poly-

nomials We grade Ld by

deg qi = deg pj = 1 (1.58)

deg z = 2 (1.59)
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We note that if f , g are (weighted) homogenous polynomials then

deg{f, g} = deg f + deg g − 2 (1.60)

Now let’s modify the grading by requiring

gradef = deg f − 2 (1.61)

for a homogenous f . That means for instance

grade 1 = −2

grade qi = grade pj = −1

grade z = 0

Thus the equation (1.60) becomes

grade{f, g} = grade f + grade g (1.62)

Thus L = C[q1, . . . , qd, p1, . . . , pd, z] with {, ·, ·} and the grade becomes a graded

Lie algebra

L = ⊕m≥−2Lm (1.63)

We note that n = L<0 = L−2 ⊕ L−1 is a graded Heisenberg algebra of dimension

2d + 1.

1.3.5 Scaling Element

The scaling element is

z̃ = 2z −
d
∑

i=1

qipi (1.64)

Let g any ( weighted - see (1.58) ) homogenous element in L. Then we have

{z̃, g} = (deg g − 2)g = gradeg · g (1.65)

Indeed we have

{z̃, g} = (z̃ − Epz̃)
∂g

∂z
− (g − Epg) · 2 −

∑

i

pi
∂g

∂pi

+
∑

i

qi
∂g

∂qi

=

= 2z
∂g

∂z
+
∑

i

pi
∂g

∂pi

+
∑

i

qi
∂g

∂qi

− 2g = (deg g − 2) · g = grade · g

Now z̃ is the unique scaling element. Indeed, let f a scaling element.
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• f scaling for g = 1 implies ( see (1.56) ) ∂f
∂z

= 2

• f scaling for g = pi implies ∂f
∂qi

= −pi

• f scaling for g = qi implies ( using also ∂f
∂z

= 2 ) ∂f
∂pi

= −qi

We conclude that

f = z̃ + c

where c is a constant. But the {c, q} = 0 for all g. That implies

c ·
∂g

∂z

for all g. We conclude ( for g = z) that c = 0. ( Or we could have used {c, z̃} =

−2c = 0 )

1.3.6 The Nondegeneracy

Consider our graded Lie algebra

L = ⊕m≥−2Lm (1.66)

We have

L−2 = C and

L−1 = 〈q1, . . . , qd, p1, . . . , pd〉

For all m ≥ −1 we have a map

Lm ×L−1 → L−m−1 (1.67)

Let’s determine the left kernel of this map, that is

{f ∈ L | {f,L−1} = 0} (1.68)

From (1.56) it follows that

− qi
∂f

∂z
−

∂f

∂pi
= 0 (1.69)

∂f

∂qi
= 0 (1.70)
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Now take ∂
∂qi

of the first equation and we get

−
∂f

∂z
− qi

∂2f

∂qi∂z
−

∂2f

∂qi∂pi
= 0

Now using (1.70) and the symmetry of second derivatives we get

∂f

∂z
= 0 (1.71)

and thus

∂f

∂pi
= 0 (1.72)

Conclude all the partial derivatives of f are zero and thus f is a constant, f ∈ L−2.

We conclude that for all m ≥ −1 the map (1.67) is nondegenerate

1.3.7 The group of automorphisms of the Legendre algebra

We will determine the group of automorphisms of L as a graded Lie algebra.

Every automorphism of L restricts to an automorphism of L<0, that is, an auto-

morphism of the graded Heisenberg Lie algebra n = n−2 ⊕ n−1. Conversely, since

by (1.3.3) L is the algebraic prologation of n, every automorphism of n extends

uniquely to an automorphism of L. Therefore we have

Proposition 1.3.1. The group of automorphisms of L is isomorphic to the group

of automorphisms of n

Note: This result is valid for any algebraic prologation, the group of automor-

phisms being the group of automorphisms of the negative part.

Now the group of automorphisms of n– the Heisenberg algebra is GSP (n−1),

hence so is . the group of automorphisms of the Legendre algebra

Let’s first describe the subgroup of automorphisms given by Sp(n−1)

Theorem 1.3.2. Let T : n−1 → n−1 a linear symplectic automorphism of n−1.

Consider the automorphism T̃ of L as a graded associative algebra that is T on

n−1 and takes z̃ to itself. Then T̃ is an automorphism of L as a graded Lie algebra

– the unique extension of T .
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Proof. Note that T̃ is the unique extension of T as morphism of graded Lie algebras

since ( see below) L is the algebraic prolongation of n. To show that T̃ is indeed

a morphism of Lie algebras note that T̃ is a graded automorphism and moreover,

for every l ∈ n−1 the map ad(l) = {l, ·} is a derivation of L as a an associative

algebra and as a Lie algebra. Moreover, the centralizer of n−1 in L is n−2. Now

the result follows by induction on degrees.

As an example let T be given by pi 7→ qi, qi 7→ −pi. Let also z 7→ z −
∑

piqi. Extend this multiplicatively. We get an automorphism of L as a graded

Lie algebra, which is of order 4. Note that z̃ = 2z −
∑

piqi is invariant, like for

every automorphism of L. We observe now that GSp(n−1) = Sp(n−1) × C×/±1.

Also, C× acts on L by C× 3 s 7→ multiplication by sm on Lm. Let T ∈ GSp(n−1).

Then (Tu, Tv) = t2 · (u, v) for some t ∈ C×. Then T = t · T0 where T0 inSp(n−1).

The automorphism of L determined by T is given by

pa
i q

b
j z̃

c 7→
(T0pi)

a(T0qi)
bz̃c

tm
(1.73)

for a + b + 2c = m + 2

1.3.8 The Cohomology Groups H i(n,L)

Let n = L−2⊕L−1 the Heisenberg algebra, subalgebra of L. Let a the center of

h, it is 1-dimensional. Now g/a is a 2d-dimensional abelian subalgebra. We have

the Hochschild-Serre spectral sequence

Ep,q
2 = Hp(n/a, Hq(a,L)) ⇒ Hn(n,L) (1.74)

Now the action of a = C · 1 on L is given by

1 · f =
∂f

∂z
(1.75)

The cohomology of a 1-dimensional Lie algebra acting by a linear operator T are

given by

H0(a,L) = ker T (1.76)

H1(a,L) = coker T (1.77)

Hq(a,L) = 0 for q ≥ 2 (1.78)
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Now ker T = ker ∂
∂z

= C[pi, qj ] and coker T = coker ∂
∂z

= 0 ( since we can integrate

with respect to z. It follows that in the spectral sequence above at step 2 the

only nonzero column is column (Ep,0
2 )p≥0. It follows that the spectral sequence

degenerates at step 2 and so we have

Hn(n,L) = Hn(n/a, H0(a,L)) = Hn(C2n, C[pi, qj]) (1.79)

where C2n is the commutative Lie algebra with basis pi, qj . Moreover the action

of C
2n on C[pi, qj] is given by partial derivatives (with some signs that can be

absorbed). Now we use Poincare Lemma for differential forms with polynomial

coefficients ( that is what the standard cohomology complex will be). We conclude:

H≥1(n,L) = 0 (1.80)

H0(n,L) = C (1.81)

1.3.9 The Legendre Algebra and the Heisenberg Algebra

Rather than use the construction of Tanaka we show directly that

Theorem 1.3.3. n → L is the algebraic prolongation of the Heisenberg algebra.

Proof. et Z-graded Lie algebra g = ⊕i∈Zgi and a morphism of graded Lie algebras

n → g<0 (1.82)

We will show this under the additional assumption that the above morphism is an

isomorphism, that is the negative part of g is n. This is always the case when g is a

simple Lie algebra over C and n is the nilpotent radical of Heisenberg parabolic. We

the map n → L extends uniquely to a morphism of graded Lie algebras φ : g → L.

We define φ inductively on each gi. First, φ is already defined for i < 0 – indeed,

φ is just the identity on the negative part of g which is n. Assume we have defined

already φ on ⊕j<igj such that φ([H, Y ]) = [H, φ(Y )]. Take X ∈ gi. Now for all H

in h we have [H, X] ∈ ⊕j<igj since n is the negative part of g. Therefore φ([H, X])

is already defined What should φ(X) be? We must have [φ(H), φ(X)] = φ([H, X]),
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that is [H, φ(X)] = φ([H, X]) Consider the map α : n → L, α(H) = φ([H, X]). We

have

α([H1, H2]) = φ([[H1, H2], X]) = φ([H1, [H2, X]]) − φ([H2, [H1, X]]) =

( by induction hypothesis) = [H1, α(H2)] − [H2, α(H1)]

The above equality says α is a 1-cocycle of the n-module L. Since the 1-cohomology

is zero the cocycle α is a coboundary, that is there exists Y in L such that

α(H) = φ([H, X]) = [H, Y ] for all H in h. Since the centralizer of n in L is

n−2 it follows that Y is unique modulo n−2. By degree considerations it follows

that there exists a unique Y with deg Y = deg X such that [H, Y ] = φ([H, X])

for all H ∈ h. Define therefore φ(X) = Y . Thus we construct φ inductively.

We check now φ is a morphism of Lie algebras. Linearity follows easily from the

uniqueness of the construction. Let now X1, X2 in g homogenous elements. We

show that φ([X1, X2]) = [φ(X1), φ(X2)] inductively on dim X1 + dim X2. When

dim X1, dim X2 negative they are in n so the equality holds. Let now X1, X2 in

g. We have φ([H, [X1, X2]]) = [H, φ([X1, X2])] for all H in h, by the construction

of φ. Now φ([H, [X1, X2]]) = φ([[H, X1], X2]) + φ([X1, [H, X2]]). Now the elements

of g [H, X1], [H, X2] have degree smaller than respectively X1, X2. By induction

hypothesis we have φ([[H, X1], X2]) = [φ([H, X1]), φ(X2)] and φ([X1, [H, X2]]) =

[φ(X1), φ([H, X2])] Now we have φ([H, Xi]) = [H, φ(Xi)] for i = 1, 2. We conclude

by adding all up:

φ([H, [X1, X2]]) = [[H, φ(X1)], X2] + [φ(X1), [H, φ(X2)]] = [H, [φ(X1), φ(X2)]]

and therefore

[H, φ([X1, X2])] = [H, [φ(X1), φ(X2)]]

Since the centralizer of n in L is contained in n we conclude

φ([X1, X2]) = [φ(X1), φ(X2)]
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1.4 The result of Mukai

Let g be a simple Lie algebra over C. Let G a complex Lie group with Lie

algebra g. Consider the adjoint action of G on the projective space P(g). ( note

that this action factors through the adjoint group Gad so the choice of G between

the adjoint group Gad and simply connected group Gsc is in fact not important at

this point). From [CM93] we know that the action has a unique closed orbit which

belongs to the closure of any other orbit. If X ∈ g then X̄ belongs to the minimal

orbit if and only if there exists a Cartan subalgebra h ⊂ g and a choice of positive

subsystem R+ ⊂ R, the root system of (g, h) such that X̄ belongs to gβ where

β is the largest root of R. Moreover the choice of h and order on R is unique.

We can understand this as follows: g with the adjoint action is an irreducible

representation of G because g is simple. The orbit of a highest weight vector, that

is a nonzero element in gβ is the minimal closed orbit in P(g). Alternatively, X̄ is

in the minimal orbit if and only if C · X is the center of the nilpotent radical of a

Heisenberg parabolic.

Consider thus h a Cartan subalgebra of g, R the root system of (g, h), a choice

of a positive subsystem R+. Let p the unique standard Heisenberg parabolic (

parabolic with the nilpotent radical a Heisenberg algebra). Recall that p is obtained

as follows: Let β the largest root of R. We have [gβ, g−β] a 1-dimensional subspace

of h. Let β∨ in [gβ, g−β] uniquely determined by : β(β∨) = 2. We have the

eigenvalue decomposition of g relative to ad(β∨) g = ⊕2
i=−2gi. Then p = ⊕i≥0gi

and its nilpotent radical is g1 ⊕ g2, a Heisenberg algebra. Moreover, the opposite

parabolic ⊕i≤0gi has again as nilpotent radical a Heisenberg algebra g−2 ⊕ g−1

Thus g is a graded Lie algebra with the negative part g−2 ⊕ g−1 = n = n−2 ⊕ n−1

a graded Heisenberg algebra. Let 2d + 1 the dimension of this Heisenberg algebra

( d is determined as in Table 1.2). Now we know that the algebraic prolongation

of the Heisenberg algebra of dimension 2d + 1 is the Legendre algebra in 2d + 1

variables Ld. Therefore

Theorem 1.4.1. ( [Muk98]) there exists an embedding of graded Lie algebras g →

Ld = L that is an isomorphims from g<0 to L<0.
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Let Xβ ∈ gβ , X−β ∈ g−β such that (Xβ, X−β, β
∨) form an sl(2) triple. We

can choose the mapping g<0 to L<0 by taking X−β 7→ 1 ∈ L−2. Now β∨ is the

scaling element for the graded Lie algebra g. Therefore it will map to the unique

scaling element of L which is z̃ = 2z −
∑d

i=1 qipi. Since [Xβ, X−β] = β∨, Xβ maps

to an element in L2 f such that {f, 1} = z̃. From (1.56) we have {f, 1} = −∂f
∂z

.

Therefore ∂f
∂z

= −2z +
∑d

i=1 qipi and so

f = −(z −
1

2

d
∑

i=1

qipi)
2 + F (p, q) (1.83)

where F (q, p) is a homogenous polynomial of degree 4 in pi, qi. Therefore the

embedding g → L is thus determined by a form of degree 4 that we call the Mukai

form. We will later on analyse further this form of degree 4 making the connection

to another form of degree 4 defined by Gross and Wallach.

Note that our polynomial of degree 4 differs from Mukai’s by a factor of −4.

1.5 Calculations for sl(n, C)

We determine explicitly the mapping from the Lie algebra sl(n, C) to Ld given

by Mukai’s theorem. We have d = n − 2 so n = d + 2. In fact we will find a

map φ from gl(d + 2, C) to Ld. Let Eij the standard basis of gl(d + 2, C) where

0 ≤ i, j ≤ d + 1. We use the theorem on the existence and uniqueness of the

extension morphism of graded Lie algebras that takes Ei0 to pi, Ed+1,j to qj and

Ed+1,0 to 1. Let aij = φ(Eij) the image of Eij . We have

ai,0 = pi for 1 ≤ i ≤ d

ad+1,j = qj for 1 ≤ i ≤ d

ad+1,0 = 1

Determination of aij for 1 ≤ i, j ≤ d:

We have [Ei,j, Ed+1,0] = 0 and so {aij, ad+1,0} = 0. Therefore {aij, 1} = −∂aij

∂z
=

0 and so aij is a polynomial in p’s and q’s only.

For 1 ≤ k ≤ d, k 6= j we have

[Eij , Ek,0] = 0
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and so

{aij, pk} = 0
∂aij

∂qk

= 0

Similarly, for 1 ≤ l ≤ d, k 6= i

{aij, ql} = 0
∂aij

∂pl
= 0

Now we have

[Eij , Ej,0] = Ei,d+1

and so

{aij, aj,0} = ai,d+1

that is

{aij, pj} = pi

∂aij

∂qj

= pi

Similarly we have

[Eij, Ed+1,i] = −En+1,i

and so

{aij , an+1,i} = −an+1,j

that is

{aij , qi} = −qj

−
∂aij

∂pi
= −qj
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Here is the complete list of the partial derivatives of aij

∂aij

∂z
= 0

∂aij

∂pl
= 0 for l 6= i

∂aij

∂qk
= 0 for k 6= j

∂aij

∂pi
= qj

∂aij

∂qj
= pi

Since aij has no constant term ( being a polynomial of weighted degree 2) it follows

that

aij = piqj (1.84)

Determination of a00 :

We have

[E00, Ed+1,0] = −Ed+1,0

and so

{a00, 1} = −1

−
∂a00

∂z
= −1

For 1 ≤ i ≤ d we have

[E00, Ed+1,i] = 0

and so

{a00, ad+1,i = 0

{a00, qi} = −qi
∂a00

∂z
−

∂a00

∂pi

and so

∂a00

∂pi
= −qi
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For 1 ≤ j ≤ d we have

[E00, Ej,0] = −Ej0

and so

{a00, aj,0} = −aj,0

{a00, pj} =
∂a00

∂qj

= −pj

Here is the complete list of the partial derivatives of a00

∂a00

∂z
= 1

∂a00

∂pj
= −qj

∂a00

∂qi

= −pi

Since aij has no constant term ( being a polynomial of weighted degree 2) it follows

that

a00 = z −
d
∑

i=1

piqi (1.85)

Determination of an+1,n+1:

We have

[Ed+1,d+1, Ed+1,0] = Ed+1,0

and so

{ad+1,d+1, ad+1,0} = ad+1,0

and so

{ad+1,d+1, 1} = −1
∂ad+1,d+1

∂z
= −1

For 1 ≤ i ≤ d we have

[Ed+1,d+1, Ei,0] = 0
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and so

{ad+1,d+1, ai0} = 0

that is

{ad+1,d+1, pi} = 0
∂ad+1,d+1

∂qi

= 0

For 1 ≤ j ≤ n we have

[Ed+1,d+1, Ed+1,j ] = Ed+1,j

and so

{ad+1,n+1, ad+1,j} = an+1,j

{ad+1,d+1, qj} = 0

−qj
∂ad+1,d+1

∂z
−

∂ad+1,d+1

∂pj
= −qj

therefore

∂ad+1,d+1

∂pj
= 0

Here is the complete list of the partial derivatives of an+1,n+1

∂ad+1,d+1

∂z
= −1

∂ad+1,d+1

∂pj
= 0

∂ad+1,d+1

∂qi
= 0

Since ad+1,d+1 has no constant term ( being a polynomial of weighted degree 2) it

follows that

ad+1,d+1 = −z (1.86)

Determination of a0i for 1 ≤ i ≤ d :
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We have

[E0i, Ed+1,0] = −Ed+1,i

and so

{a0i, ad+1,0} = −ad+1,i

{a0i, 1} = −qi

−
∂a0i

∂z
= −qi

We have

[E0i, Ei0] = E00 − Eii

and so

{a0i, ai0} = a00 − aii

{a0i, pi} = z −
d
∑

l=1

plql − piqi

∂a0i

∂qi
= z −

d
∑

l=1

plql − piqi

For 1 ≤ j ≤ d, j 6= i we have

[E0i, Ej0] = −Eji

and so

{a0i, aj0} = −aji

{a0i, pj} = pjqi

∂a0i

∂qj

= −pjqi

We have

[E0i, Ed+1,j] = 0

and so

{a0i, ad+1,j} = 0{a0i, qj} = 0

−qj
∂a0i

∂z
−

∂a0i

∂pj
= 0
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and so

∂a0i

∂pj

= −qiqj

Here is the complete list of partial derivatives of a0i :

∂a0i

∂z
= qi

∂a0i

∂qi
= z −

n
∑

l=1

plql − piqi

∂a0i

∂qj

= −pjqi for j 6= i

∂a0i

∂pj

= −qiqj

We conclude

a0i = (z −
∑

plql)qi (1.87)

Determination of ai,n+1 for 1 ≤ i ≤ n:

We have

[Ei,d+1, Ed+1,0] = Ei,0

and so

{ai,d+1, ad+1,0} = −ai0

{ai,d+1, 1} = −pi

−
∂ai,d+1

∂z
= pi

We have

[Ei,d+1, Ej,0] = 0

and so

{ai,d+1, aj,0} = 0

{ai,d+1, pj} = 0
∂ai,d+1

∂qj
= 0
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We have

[Ei,d+1, Ed+1,i] = Eii − Ed+1,d+1

and so

{ai,d+1, ad+1,i} = aii − ad+1,d+1

{ai,d+1, qi} = piqi + z

−qi
∂ai,d+1

∂z
−

∂ai,d+1

∂pi
= piqi + z

and so

∂ai,d+1

∂pi

= −z

For 1 ≤ j ≤ d, j 6= i we have

[Ei,d+1, Ed+1,j] = Eij

and so

{ai,d+1, ad+1,j} = aij

{ai,d+1, qj} = piqj

−qj
∂ai,d+1

∂z
−

∂ai,n+1

∂pj
= piqj

and so

∂ai,d+1

∂pj
= 0

Here is the list of the partial derivatives of ai,d+1

∂ai,d+1

∂z
= −pi

∂ai,d+1

∂qj
= 0

∂ai,d+1

∂pi
= −z

∂ai,d+1

∂pj

= 0 for j 6= i
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It follows that

ai,d+1 = −piz (1.88)

Determination of a0,n+1 :

We have

[E0,d+1, Ed+1,0] = E00 − Ed+1,d+1

and so

{a0,d+1, ad+1,0} = a00 − ad+1,d+1

{a0,d+1, 1} = 2z −
∑

plql

−
∂a0,n+1

∂z
= 2z −

∑

plql

We have

[E0,d+1, Ei,0] = −Ei,d+1

and so

{a0,d+1, ai,0} = −ai,d+1

{a0,d+1, pi} = piz
∂a0,d+1

∂qi

= piz

We have

[E0,d+1, Ed+1,i] = −E0,i

and so

{a0,d+1, ad+1,i} = a0i

{a0,d+1, qi} = (z −
∑

plql)qi

−qi
∂a0,d+1

∂z
−

∂a0,d+1

∂pi
= (z −

∑

plql)qi
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and so

∂a0,d+1

∂pi
= qiz

The list of all the partial derivatives of a0,n+1 is

∂a0,d+1

∂z
= −2z +

∑

plql

∂a0,d+1

∂pi
= qiz

∂a0,d+1

∂qi

= piz

We conclude that

a0,n+1 = −z(z −
∑

plql) (1.89)

Therefore the element Xβ with β = e0 − ed+1, that is E0,d+1 maps to a0,n+1 =

−z(z −
∑d

i=1 piqi) in Ld.

We have z(z −
∑d

i=1 plql) = −(z − 1
2

∑d
i=1 pi)

2 + 1
4
(
∑d

i=1 piqi)
2. Therefore in

the case of the simple Lie algebra of type A the polynomial of degree 4 is (up to a

constant) (
∑d

i=1 piqi)
2.

Note that

• Eij 7→ αiβj where

α0 = z −
∑

piqi

αi = pi

αd+1 = 1

β0 = 1

βj = qj

βd+1 = −z

• E0,0 + E1,1 + . . . En+1,n+1 7→ 0

An explicit form of the map of Lie algebras gl(d + 2, C) → Ld is: Let (cij) an

element in gl(d + 2, C). Then

(cij) 7→ (z −
∑

piqi, p1, . . . , pd, 1) · (cij) · (1, q1, . . . , qd,−z)t (1.90)

The following table gives the mapping gl(4, C) → L2

The description of the map is: Eij 7→ the element (i, j) of the matrix.
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Table 1.2: The mapping of gl(4, C)

z −
∑

piqi (z −
∑

piqi)q1 (z −
∑

piqi)q2 −z(z −
∑

piqi)

p1 p1q1 p1q2 −p1z

p2 p2q1 p2q2 −p2z

1 q1 q2 −z



2 Contact structures

2.1 Definition, Examples

2.1.1 Contact Forms

All manifolds can be real or complex. Let M a manifold of odd dimension

2n + 1. A 1-form α defined on an open subset of M is called a contact form if

α ∧ (dα)n 6= 0 (2.1)

(it has no zeroes). Example : M = R2n+1 with coordinates (z, q1, . . . qn).Take the

1-form α

α = dz −
n
∑

i=1

pidqi (2.2)

We have

dα = dz +

n
∑

i=1

dqi ∧ dpi (2.3)

We get

α ∧ (dα)n = n!dz ∧ dq1 ∧ dp1 . . . ∧ dqn ∧ dpn (2.4)

Let β = f · α. We get dβ = df ∧ α + f · dα. We conclude

β ∧ (dβ)n = fn+1 · α ∧ (dα)n (2.5)

Note that the condition (2.25) is equivalent to dα is a nondegenerate skewsymmet-

ric form on ker α at each point. This follows from the

Lemma 2.1.1. (Linear Algebra) Let V a vector space ( finite dimensional) α 6= 0

a 1-form on V and η a m-form on V (m ≥ 1 ). Let V0 : = {v ∈ V | α(v) = 0} .

Then η|V0
6= 0 if and only if α ∧ η 6= 0

32



33

1

Proof. Let e∗1 = α, e∗2,. . . , e∗n a basis of V ∗, e1, . . . , en the dual basis of V . Then

V0 = span{e2, . . . , en} and the restrictions of e∗2,. . . ,em are the dual basis of . Write

η =
∑

ai1,...,ime∗i1 ∧ . . . ∧ e∗im (2.6)

...

2.1.2 Definition of Contact Manifolds

Let M an 2n + 1 dimensional manifold. Take for every x in M a codimension

one subspace of Tx(M) in a smooth manner. We get a codimension 1 subbundle

of the tangent bundle B ⊂ T (M) . Let L ⊂ T ∗(M) the orthogonal complement of

B. L is a line bundle over M . We say that B is a contact structure on M if all

local nonzero sections of L are contact forms. From (2.5) this is equivalent to: B

can be given locally by contact forms.

Definition 2.1.2. A contact manifold is a manifold with a contact structure.

Note: It may be impossible to give B globally by a 1-form, that is L may not

have a global section without zeros , that is L may not be a trivial bundle. By

theorem of About (see [MS04] ) every contact manifold is locally isomorphic to R

with the standard contact form (2.2).

2.1.3 The role of the cotangent bundle

Let M a manifold. Consider the cotangent manifold T ∗(M). It has a tautolog-

ical 1-form that in canonical coordinates is given by

θ =
∑

pidqi (2.7)

How is this constructed? Consider P a point in T ∗(M) . It projects to a point in M .

Now P is (x, φ) where φ is a linear form on Tx(M). The canonical map T ∗(M) →

M induces a map between tangent spaces Tp(T
∗(M)) → Tx(M) . Consider the

pullback of φ under this map. It is a linear map on TP (T ∗(M)). We thus get
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a tautological 1-form θ on T ∗(M). It has the following universality property ( a

”universal 1-form”). For every 1-form β on M there exists a unique map β̄ : M →

T ∗(M) such that β is the pullback of θ by the map β̄. Indeed, take β̄ as the section

of the bundle T ∗(M) → M given by β (!).

Moreover, T ∗(M) has a canonical symplectic form

ω = dθ =
∑

dpi ∧ dqi (2.8)

In regard to this, what are the Lagrangian submanifolds of T ∗(M) that are images

of sections ( 1-forms) β : M → T ∗(M) ? The condition is that ω restricts to a zero

form. Now β is an imbedding so the condition is equivalent to β∗(ω) ≡ 0. But

ω = dθ so β∗(ω) = β∗(dθ) = dβ∗(θ) = dβ where we now view β as a 1-form. Thus

the Lagrangian submanifolds correspond to closed 1-forms.

Let now M is manifold and L a line subbundle of T ∗(M). Let L× = L\{zero section}

the associated C× bundle. The local sections of L× define a 1-dimensional sub-

bundle of M . When is this a contact structure on M?

Proposition 2.1.3. L× defines a contact structure on M if and only if dθ|L× is a

symplectic form on L×.

Proof. Note that L× is a principal C× bundle with a 1-form θ|L× ( where θ is the

canonical 1-form on T ∗(M) such that if t ∈ C× then for the push forward under

the diffeomorphism t we have t∗θ = t · θ. Conversely, assume we have a principal

C× bundle B over M and θ a form without zeroes on B such that t∗θ = t · θ. Then

B → M with θ is isomorphic to L× → M with θ|L× where θ is the canonical 1-form

on T ∗(M).

Let α a local section of L× → M . Then locally θ|L× is t · α. We have

d(t · α) = dt ∧ α + t ∧ dα

Conclude:

d(t · α)n+1 = ntndt ∧ α ∧ (dα)n

Therefore α is a contact form if and only if dθ|L× is a symplectic form

In fact we have the (apparently more general) statement.
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Proposition 2.1.4. Let assume a principal C× bundle B over M and θ a form

without zeroes on B such that t∗θ = t · θ. Then the pullback of θ by sections of

B → M define a contact structure on M if and only if dθ is a symplectic form on

B.

2.2 Contact Vector Fields and Contact

Hamiltonians

2.2.1 The Reeb vector associated to a pair (α, η)

Let V a vector space of odd dimension ( I guess the field can have characteristic

2). Let η a 2-form of maximal rank 2n. The kernel of η is defined as {v ∈ V | v ·η =

0}. This turns out to be the kernel of η considered as an alternating form on V .

It is a 1-dimensional subspace of V . Let α a 1-form on M such that the following

equivalent conditions are satisfied

• α ∧ ηn 6= 0

• η restricted to the kernel of α is nondegenerate

• α restricted to the kernel of η is nonzero.

There exists thus a unique w in the kernel of η such that α(w) = 1. We call such

w the Reeb vector associated to the pair (α, η). The defining equations of w are

w · α = α(w) = 1 (2.9)

w · η = 0 (2.10)

Example: If η is as above of maximal rank then there exists 2n linearly inde-

pendent elements in V ∗ such that

η = e∗2 ∧ e∗3 + . . . + e∗2n ∧ e∗2n+1 (2.11)

Assume that (α, η) are as above. Then α is not in the span of e2, . . . , e2n. Therefore

we can write α = e∗1 such that e∗1, e
∗
2, . . . , e

∗
2n+1 are a basis of V ∗. Consider e1, . . . en

the dual basis in V . Then the kernel of η is generated by e1. The Reeb vector

associated to the pair (α, η) is e1.
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2.2.2 The Reeb vector field associated to a contact form

Let α a contact form on M . Then (α, dα) form a pair as above at each point

of M ( for the tangent space of M at this point). Consider the vector field Y of

Reeb vectors at each point. We get the Reeb vector field. The defining equations

of Y are

Y · α = α(Y ) = 1 (2.12)

Y · dα = 0 (2.13)

Let X another vector field. We have

dα(X, Y ) = X(α(Y )) − Y (α(X)) − α([X, Y ]) (2.14)

Since Y is the Reeb vector field associated to α we get

dα(X, Y ) = 0

X(α(Y )) = 0

Conclude

Y (α(X)) = α([Y, X]) (2.15)

2.2.3 Another definition of the Reeb vector field

Let α a contact (1-)form on M ( defined locally). For every function f on there

exists a unique function v(f) such that

v(f) · α ∧ (dα)n = df ∧ (dα)n (2.16)

This is because α ∧ (dα)n is a volume form.

Fact : f 7→ v(f) is a derivation. Indeed let f , g functions on M . Then

v(fg) ∧ (dα)n = d(fg) ∧ (dα)n = (df · g + dg · f) ∧ (dα)n =

= g · df ∧ (dα)n + f · dg ∧ (dα)n =

= g · v(f) · α ∧ (dα)n + f · v(g) · α ∧ (dα)n =
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Conclude

v(fg) = v(f) · g + f · v(g)

that is , v is a vector field.

We show that v is the Reeb vector field associated to the form α , that is the

following is true

v · α = 1 (2.17)

v · dα = 0 (2.18)

Indeed, the equality (2.16) can be rewritten as

df(v) · α ∧ (dα)n = df ∧ (dα)n

and implies by linearity

β(v) · α ∧ (dα)n = β ∧ (dα)n (2.19)

for all 1-forms β. In particular, for β = α we get

α(v) · α ∧ (dα)n = α ∧ (dα)n

and so α(v) = v · α = 1 .

Now v · dα = 0 is equivalent to dα(w, v) = 0 for all vector fields w, or that the

1-form dα(w, ·) is zero on v. Consider thus β = dα(w, ·) in the equality (2.19). We

get

β(v) · α ∧ (dα)n = dα(w, v) · α ∧ (dα)n = dα(w, ·) ∧ (dα)n

But the last product is zero since (dα)n is a top-form on the support subspace of

α. Thus v · dα = 0

2.2.4 Lie derivatives

Recall the formula for the Lie derivative applied to differential forms

LX = d ◦ ιX + ιX ◦ d (2.20)
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Apply this for the 1-form α. We get

LX(α) = d(α(X)) + dα(X, ·) (2.21)

or, if Z is another vector field

LX(α)(Z) = d(α(X))(Z) + dα(X, Z) = Z(α(X)) + dα(X, Z) (2.22)

Now we also have

LX(α)(Z) = X(α(Z)) − α([X, Z]) (2.23)

Note these two equations above are compatible since by the formula for the exterior

derivative

dα(X, Z) = X(α(Z)) − Z(α(X)) − α([X, Z]) (2.24)

2.2.5 Contact Vector Fields - Definitions

Let M a contact manifold. A vector field X on M is called contact the local

1-parameter group of diffeomorphisms of M determined by X leaves invariant the

field of hyperplanes of the contact structures. Let α a contact vector field defining

locally the contact structure. Then X is a contact vector field if

LX(α) = g · α (2.25)

for some function g on M .

Example: The Reeb vector associated to α is a contact vector field. Indeed:

LY (α) = dιY (α) + ιY (dα) (2.26)

Now

ιY (α) = 1 and

ιY (dα) = 0

Conclude

LY (α) = 0 (2.27)
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2.2.6 More Formulas

Let X a contact field, α a contact form and Y the Reeb vector field associated

to α. Recall the equation (2.25) and (2.23) applied to Z : = Y we get

LX(α)(Y ) = g · α(Y ) = g

LX(α)(Y ) = X(α(Y )) − α([X, Y ]) = −α([X, Y ]) = α([Y, X])

Conclude : If X is a contact vector field then in the equation (2.25) we have (

using also (2.15))

g = α([Y, X]) = Y (α(X)) (2.28)

This is consistent with the calculation for the contact vector field Y . For this we

have g = 0 = α([Y, Y ]) Thus

LX(α) = Y (α(X)) · α (2.29)

2.2.7 Contact Hamiltonians

Let X a contact vector field as above (2.25). Fix a contact form α. The contact

Hamiltonian of X (with respect to α) denoted by H is defined by

H = α(X) (2.30)

We see that

LX(α) = Y (H) · α (2.31)

Now use (2.22)and get

X · α = H (2.32)

X · dα = −dH + Y (H) · α (2.33)

Let’s examine the above equations. They basically say that

LX(α) = X · dα + d(X · α) = Y (H) · α (2.34)

Now if for a vector field X we have d(X · α) + X · dα a multiple of α then X is a

contact vector field and we have the above equations.
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Now, given a function H on M there exists a unique contact vector field X

such that H = α(X).

Indeed there exists a unique vector field X such that

X · α = H

X · dα = −dH + multiple of α

and this vector field X is a contact vector field. For, let ξ the contact distribution

on M . There exists a unique vector field Z in ξ such that

Z · dα|ξ = −dH|ξ (2.35)

We have thus

Z · α = 0

Z · dα = −dH + multiple of α

Recall now that for the Reeb vector field Y we have

Y · α = 1

Y · dα = 0

We conclude that for the vector field It follows that the unique solution is X =

Z + HY (Y the Reeb vector field of α - see (2.12)).

Now if for a vector field X d(X · α) + X · dα is a multiple of α then X is a

contact vector field. The multiple of α will be uniquely determined ( follows from

(2.31) ) – it’s Y (H) · α

2.2.8 Contact Vector Field with a given Hamiltonian

Let M with contact form

α = dz −
n
∑

i=1

pidqi (2.36)

What is the contact vector field with the Hamiltonian H? We have

dα =

n
∑

i=1

dqi ∧ dpi
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The Reeb vector field is

Y =
∂

∂z
(2.37)

Let’s find first, like in the proof above the (unique) vector field Z such that

Z · α = 0

Z · dα = −dH + multiple of α

Let

Z = a
∂

∂z
+

n
∑

i=1

bi
∂

∂pi

+
n
∑

i=1

ci
∂

∂qi

We have

Z · α = a −
n
∑

i=1

pici = 0

and

Z · dα = −
n
∑

i=1

bidqi +

n
∑

i=1

cidpi

Now

dH =
∂H

∂z
dz +

n
∑

i=1

∂H

∂pi
dpi +

n
∑

i=1

∂H

∂qi
dqi (2.38)

We know already what the multiple of α in the equation above is

Z · dα = −dH + Y (H) · α (2.39)

or

Z · dα = −dH +
∂H

∂z
α (2.40)

Conclude

−
n
∑

i=1

bidqi +

n
∑

i=1

cidpi = −

(

∂H

∂z
dz +

n
∑

i=1

∂H

∂pi
dpi +

n
∑

i=1

∂H

∂qi
dqi

)

+ (2.41)

+
∂H

∂z
·

(

dz −
n
∑

i=1

pidqi

)

(2.42)

Conclude

bi = pi
∂H

∂z
+

∂H

∂qi

ci = −
∂H

∂pi

a = −
n
∑

i=1

pi
∂H

∂pi
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Now to get the contact vector field add the correcting term H · Y . Conclude

X =

(

H −
n
∑

i=1

pi
∂H

∂pi

)

∂

∂z
+

n
∑

i=1

(

∂H

∂qi

+ pi
∂H

∂z

)

∂

∂pi

−
n
∑

i=1

∂H

∂pi

∂

∂qi

or, if we use short form summation

X = (H − p
∂H

∂p
)

∂

∂z
+ (

∂H

∂q
+ p

∂H

∂z
)

∂

∂p
−

∂H

∂p

∂

∂q
(2.43)

2.2.9 The Legendre Bracket

Let M a contact manifold. The contact vector fields form a Lie subalgebra of

the Lie algebra of vector fields on M . Let α a contact form. Then to every contact

vector field X corresponds a function on M α(X). This gives a linear bijection

between contact vector fields and functions, where the inverse map is given by the

formula (2.43). We get in this way a structure of Lie algebra on the functions on

M . To functions H1, H2 on M corresponds the function {H1, H2} : = α([X1, X2])

. What is the explicit formula?

First recall some formulas of tensor calculus. Let X1, X2 vector fields on M .

We have

LX1
α(X2) = X1(α(X2)) − α([X1, X2]) (2.44)

Put instead of X2 in the above formula the Reeb vector field associated to the

contact form α. We get

LX1
α(Y ) = X1(α(Y )) − α([X1, Y ]) (2.45)

Also recall that

0 = dα(X1, Y ) = X1(α(Y )) − Y (α(X1) − α([X1, Y ]) (2.46)

and so

LX1
α(Y ) = α([Y, X1]) = Y (α(X1)) (2.47)

( we also use (2.15) ) Now assume that X1 is a contact vector field. Then since

α(Y ) = 1

LX1
α = LX1

α(Y )α (2.48)
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and so

LX1
α(X2) = Y (α(X1))α(X2) (2.49)

Now using the equalities above we get

X1(α(X2)) − α([X1, X2]) = Y (α(X1))α(X2) (2.50)

and so

α([X1, X2]) = X1(α(X2)) − Y (α(X1))α(X2) (2.51)

Assume now that both X1, X2 are contact vector fields with Hamiltonians H1,

H2. Then the Legendre bracket of H1, H2 is the Hamiltonian of [X1, X2] that is ,

α([X1, X2]). We get

{H1, H2} = X1(H2) − Y (H1) · H2 (2.52)

2.2.10 Legendre bracket for the standard contact structure

Let the contact form be as before

α = dz −
n
∑

i=1

pidqi (2.53)

. Recall that the Reeb vector field is Y = ∂
∂z

Let H1 , H2 functions. The associated

contact vector fields are

Xi = (Hi − p
∂H

∂p
)

∂

∂z
+ (

∂Hi

∂q
+ p

∂Hi

∂z
)

∂

∂p
−

∂Hi

∂p

∂

∂q
(2.54)

for i = 1, 2. We get

{H1, H2} = X1(H2) − Y (H1) · H2 = (2.55)

= (H1 − p
∂H1

∂p
)
∂H2

∂z
+ (

∂H1

∂q
+ p

∂H1

∂z
)
∂H2

∂p
−

∂H1

∂p

∂H2

∂q
−

∂H1

∂z
H2

We get the important formula

{H1, H2} = (H1 − p
∂H1

∂p
)
∂H2

∂z
− (H2 − p

∂H2

∂p
)
∂H1

∂z
+ (2.56)

+
∂H1

∂q

∂H2

∂p
−

∂H2

∂q

∂H1

∂p



3 Homogenous Contact

Manifolds

3.1 Homogenous contact structures

We show that homogenous contact structures are related to coadjoint orbits.

3.1.1 The setup

Assume we have an invariant contact structure on the homogenous manifold

G/P . We get a linear form ω 6= 0 on g the Lie algebra of the group G (up to

proportionality) such that

• ω(p) = 0

• Ad(P )(ω) ⊂ C× · ω

It is thus important to study coadjoint orbits.

3.1.2 A result on coadjoint orbits

Let g be a Lie algebra. Consider the representation of g on the space of linear

forms on g, denoted by g∗.

Let ω 6= 0 in g∗. Define the following two subalgebras of g:

p0 = {X ∈ g | ad(X)ω = 0} (3.1)

p = {X ∈ g | ad(X)ω ∈ Cω} (3.2)

We have the following

44
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Proposition 3.1.1. The followind assertions are equivalent:

1. ω|p = 0

2. ω|p0 = 0

3. there exists Z in g such that Z · ω = ω

4. dim p = dim p0 + 1

Proof. We have a representation of p on C by X 7→ c if ad(X)ω = cω with kernel

p0. Hence dim p ≤ dim p0 + 1. Thus 3) and 4) are equivalent. Clearly 1) ⇒ 2).

We now prove 3) ⇒ 1). Let Z such that Z · ω = ω. Then ω([X, Z]) = ω(X)

for all X ∈ g. Let now H be such that H · ω = 0. Thus means that ω([X, H ]) = 0

for all X. In particular it’s true for Z as above. We conclude ω(H) = 0. Thus

ω|p0 = 0. Since p = p0 ⊕ CZ we still need ω(Z) = 0. But by the above ω(Z) =

ω([Z, Z]) = ω(0) = 0.

2) ⇒ 3) We use the followind lemma from linear algebra which is the linear

version of Nullstellensatz: Let V a finite dimensional vector space and φi, φ func-

tionals on V such that ∩ ker φi ⊂ ker φ. Then there exists i1, . . . , in and scalars

a1, . . . , an such that φ =
∑

ailφil. Indeed, by finite dimensionality there exist i1,

. . . , in such that ∩n
l=1 ker φil ⊂ ker φ. Now consider the linear map from V to kn,

Φ = (φi1 , . . . φin). We have ker Φ ⊂ ker φ and therefore there exists a linear map

T : Image(Φ) → k such that φ = T ◦ Φ. Extend T to a linear map from kn to k,

given by (a1, . . . , an) and the equality is still valid. Thus φ =
∑

ailφil

Let now ω in g such that : ω([X, H ] = 0 for all X ∈ g implies ω(H) = 0.

Consider now the family of linear functionals on g φX(·) = ω([X, ·] and φ(·) = ω(·).

We have the conditions of the lemma above and therefore φ =
∑

alφXl
that is

ω(Y ) =
∑

alω([Xl, Y ]). Take Z = −(
∑

alXl) and we have Z · ω = ω.

3.1.3 Homogenous contact manifolds- first case

Let ω in g∗ satisfying the equivalent conditions in Proposition (3.1.1). Consider

the adjoint representation of G on g∗ and the corresponding representation on

P(g∗)- the projective space associated to g∗. Let P the stabilizer of [ω] - an element
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of P(g∗) and P 0 the stabilizer of ω. Consider the Lie algebras of these subgroups

of G. By the above we have dim p = dim p0 + 1. Therefore we have a C× bundle

P/P 0 → G/P 0 → G/P (3.3)

Since ω|P0 = 0 we get a left invariant form on G/P 0 whose exterior differential is

the Kostant-Kirillov form hence nondegenerate (see [Kir04]). From above ω|p = 0.

The left translations of ker(ω) give a contact structure on G/P .

We show that this is the only possibility up to a covering map, that is, if the

form ω endows G/L with a contact structure then the Lie algebra of L equals p.

Let l = Lie(L). We have l ⊂ p. Let l0 = l ∩ p0. We have l0 = Lie(L ∩ P 0). We

distinguish two cases:

Case 1. dim l = dim l0 + 1.

We have the C× principal bundle

C
× ' L/L0 → G/L0 → G/L (3.4)

Now ω gives a contact form on G/L if and only if dω gives a symplectic form on

G/L0. But this is equivalent to ω([·, ·]) is a nondegenerate form on g/l0. Therefore

l0 ⊃ p0. This implies l0 = p0 and so l = p.

Case 2. l0 = l.

That means L and L0 have the same identity connected component. The

map G/L0 → G/L is a covering map, so locally a diffeomorphism. Hence if ω

gives a contact structure on G/L it also gives a contact structure on G/L0. Since

dim G − dim L0 odd, dim G − dim P 0 even, and L0 ⊂ P 0 we have dim p0/l0 ≥ 1.

At ē ∈ G/L0 ker ω contains p0/l0 which is in the kernel of dω. But this contradicts

the fact that ω give a contact form on G/L0.

3.1.4 Homogenous contact manifolds - second case

Assume now ω does not satisfy the equivalent conditions Proposition (3.1.1).

Then ω(p0) 6= 0. Define

p1 = p0 ∩ ker(ω) (3.5)
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Now p0 is a subalgebra of g so [p0, p0] ⊂ p0. Moreover, by the definition of p0 we

have [p0, g] ⊂ ker ω. It follows that [p0, p0] ⊂ p1 so in particular, p1 is an ideal of

p0. Let P 1 the connected subgroup of G with Lie algebra p1. Assume moreover

that P 1 is closed. We get a fibration

P 0/P 1 → G/P 1 → G/P 0 (3.6)

over the coadjoint orbit of ω. In this case G/P 1 is again a contact homogenous

manifold. Indeed, ω gives a globally defined 1-form on G/P 1. It is enough to check

the contact form condition at ē. But from (3.5) ker dω ∩ ker ω = p1/p1 = 0.

Note: It is possible that P 1 is not closed.

Conversely, if ω gives a contact structure on G/L then Lie(L) = p1. The proof

is similar to the first case.

3.2 Contact structure on nilpotent orbits

Let G a connected reductive Lie group, in our context meaning its Lie algebra

g is reductive. This is equivalent to the existence of a nondegenerate symmetric

bilinear form (·, ·) on g that is g-invariant, that is ([X, Y ], Z) + (Y, [X, Z]) = 0 for

all X, Y, Z in g. This form gives a G-equivariant isomorphism g → g∗. Therefore

we have a correspondence between adjoint and coadjoint orbits.

Let X in g and ωX = (X, ·) the corresponding linear form on g. We see that

ωX satisfies the equivalent conditions of (3.1.1) if and only if there exists Z in g

such that [Z, X] = X. Now we have the following

Lemma 3.2.1. Let g a reductive Lie algebra and X in g. The following assertions

are equivalent

1. There exists Z in g such that [Z, X] = X

2. X is nilpotent

Proof. 1) ⇒ 2) is standard linear algebra and 2) ⇒ 1) follows from Jacobson-

Morozov theorem [CM93].
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It follows now from (3.1.1) that if G is a connected reductive group and X a

nonzero nilpotent element then the orbit of [X] in P(g) has a contact structure

invariant under G.

3.3 Contact structure on the minimal nilpotent

orbit

Let G a complex connected simple Lie group with Lie algebra g. Thus g is a

complex simple Lie algebra. Let h a Cartan subalgebra of g. Consider the root

decomposition of g corresponding to the pair (g, h) :

g = h ⊕
⊕

α∈R

gα

with R the root system of (g, h). Let b a Borel subalgebra of G. Then NG(b) is

a Borel subgroup of G. Recall now that a parabolic subgroup of G is a subgroup

of G containing a conjugate of B and a standard parabolic subgroup of G is a

subgroup of G containing B. The standard parabolic subgroups of G are into 1−1

correspondence with the Lie subalgebras of g : = Lie(G) containing b : = Lie(b)

by the Lie correspondence. Every parabolic subgroup P is connected and we have

P = NG(p), P = NG(P ) where p = Lie(P ). Moreover, every parabolic subgroup of

G is algebraic. Note there exists a unique structure of complex algebraic group on

G that gives the holomorphic structure on G and G is an affine complex algebraic

variety ( recall G is a complex simple Lie group). Also P is a closed complex

algebraic subvariety. Moreover, G/P is a projective algebraic variety and so G/P

is compact. One may ask whether if L is a closed Lie subgroup of G such that

G/P is compact then is L a parabolic subgroup? The answer is negative. However,

it is still true if we assume moreover that L is algebraic. The reason for this is

that G/P , being a quasiprojective complex algebraic variety and compact in the

classical topology is then projective.

Let p be he unique Heisenberg parabolic subgalgebra of g containing b and P

its corresponding Lie subgroup of G. Recall that p is determined as follows: Let
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β the largest root of R corresponding to the ordering R+. We have thus

p = h ⊕
⊕

α(β∨)≥0

gα (3.7)

Note that for α root we have (α, β) ≥ 0 ⇐⇒ [Xα, Xβ] = 0. Indeed α + β is

not a root for all α root such that α(β∨) ≥ 0 and α + β is a root or zero for all α

root such that α(β∨) < 0. ( See the subsection on the Largest Root).

Let Xβ ∈ gβ. Let P 0 the centralizer of Xβ. that is

P 0 = {g ∈ G | Ad(g)(Xβ) = Xβ}

The Lie algebra of P 0 is

p0 = {X ∈ g | [X, Xβ ] = 0}

We note that

p0 = Ker(β) ⊕
⊕

β∨(α)≥0

gα (3.8)

since it’s a standard fact for any root vector that the centralizer in g has the form

Zg(Xβ) = Ker(β) ⊕
⊕

α+β 6∈R

gα

(think of [gβ, gα] = gβ+α or 0 so a shift by β in the root system ) and hence the

conclusion.

Thus p0 is a codimension 1 subalgebra of p , the Heisenberg parabolic. Since

P is the largest possible subgroup of G with Lie algebra p ( in fact there are no

others!) then P 0 is a codimension 1 subgroup of P .

Then P 0 is a subgroup of P of codimension 1 and we can see that the quotient

group P/P 0 is isomorphic to C
×. Note that β extends to a homomorphism β : p →

C with kernel p0. The exponential of β gives the isomorphism P/P 0 ' C×.

Let 1-form ω is given by

ω(X) = (Xβ, X) (3.9)

for X ∈ g, where (, ) is an invariant bilinear form on g ( for example the Killing

form).
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It follows that P is the stabilizer of ω̄ in P(g) and P 0 is the stabilizer of ω. This

situates us in the first case of homogenous contact manifolds. Thus ω determines

a homogenous contact structure on G/P . Note that G/P is a compact and simply

connected manifold. The compactness follows from the fact that P is a parabolic

subgroup. For simply connectedness, note that the orbit in P(g) does not depend

on the connected simple Lie group G with Lie algebra g. Hence, we can consider

for G the simply connected one. Now P as a parabolic subgroup is connected. It

follows that G/P is simply connected.

3.4 Boothby’s Theorem

Homogenous manifolds are manifolds( real or complex) on which a Lie group

acts transitively. They are of the form G/H where G is a Lie group and H is a

closed subgroup.

The following theorem is due to Boothby ([Boo61]) and is a converse to the

result about minimal nilpotent orbits. We will give a proof of this result in (3.4.2)

using some results on homogenous contact manifolds.

Theorem 3.4.1. Let M a compact complex simply connected homogenous contact

manifold. Then M is isomorphic with the projectivized adjoint orbit of a complex

connected simple Lie group G. Thus, M is given as G/P where P is a Heisenberg

parabolic subgroup of G.

Moreover, the complex Lie group G is uniquely determined up to local iso-

morphism. Indeed, Wolf showed [Wol65] that the connected component of the

group of all contact automorphism of M is Gad- the adjoint group of G. Hence, we

have a 1 − 1 correspondence between compact complex simply connected contact

manifolds and complex simple Lie algebras.

3.4.1 Results on homogenous manifolds

We have an easy lemma
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Lemma 3.4.2. Let G be a Lie group and let H be a closed subgroup such that

the homogenous space G/H is connected. Then the identity component of G acts

transitively on G/H.

Proof. We have to show that G0 · H = G, that is, in each coset of G0 in G there

is an element of H , or equivalently, H intersects every connected component of G.

Let g an element of G. In the space G/H there exists a path σ̄ from ḡ to ē. The

fibration G → G/H has the homotopy lifting property (see [Ste99]). Hence there

exists a lift σ of σ̄ from g to some h in H

Another result of the same kind is due to Montgomery [Mon50].

Lemma 3.4.3. Let G a connected Lie group and G/H a compact homogenous

space. Then a maximal compact subgroup of G acts transitively on G/H.

Proof. All the maximal compact subgroups of G are conjugate ( see [Hel01]). So

it’s enough to prove the result for a particular one. ( the argument : K is transitive

on G/H iff KH = G . But this is equivalent to gKg−1H = G or Kg−1H = G.

Now write g−1 = kh and we are left with KkhH = G which is true – may also

think in terms of homogenous spaces - different points correspond to conjugate

subgroups )

Now, take L a maximal compact subgroup of H . Let K a maximal compact

subgroup containing L . Then we have L = K ∩ H . Consider the diagram

K/K ∩ H

%%��
H/K ∩ H

''

// G/K ∩ H //

��

G/H

G/K

K/K ∩H embeds into the connected manifold G/H . To show that the map is

surjective (and so a diffeomorphism) it’s enough to show the two manifolds have

the same dimension.

Let d = dim G/H . The top dimensional homology group Hd(G/H, Z/2Z) is

nonzero. since G/H is compact .
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The horizontal line in the diagram above is a fiber bundle with fiber diffeo-

morphic to Rm for some m ( see [Hel01]). From the general theory ( see [Ste99])

this fiber bundle has a section that is a retract of G/K ∩ H . We conclude that

H∗(G/H, Z/2Z) injects into H∗(G/K ∩ H, Z/2Z) .

The vertical line in the diagram above is a fiber bundle with contractible base

. It follows that the fiber bundle is trivial and so G/K ∩ H is diffeomorphic to

G/K × K/K ∩ H .

We conclude that H∗(G/K ∩ H, Z/2Z) = H∗(K/K ∩ H, Z/2Z) .

From the above it follows that Hd(K/K∩H, Z/2Z) 6= 0 and so dim K/K∩H ≥

d.

The following two lemmas are due to Wang [Wan54].

Lemma 3.4.4. Let K a compact connected Lie group and K/L a compact homoge-

nous space with first homotopy group π1(K/L) finite. Then [K, K] the maximal

connected semisimple subgroup of K acts transitively on K/L.

Proof. Let J be the maximal connected semisimple subgroup of G. Then J is a

normal subgroup and K/J is a torus. It follows that JL is a closed subgroup of

K and K/JL is a torus. We have to show that K/JL is a trivial group in fact.

Consider the fiber bundle

JL/L → K/L → K/JL

JL/L is connected as a quotient of J . It follows that we have a surjective map

π1(K/L) → π1(K/JL)

Hence π1(K/JL) is also finite. But K/JL is a torus so a free group of rank

dim(K/JL). It follows that K/JL is the trivial group

We have a generalization of this result

Lemma 3.4.5. Let G a connected Lie group and G/H a compact homogenous space

with first homotopy group π1(G/H) finite. Then a maximal connected semisimple

subgroup of G acts transitively on G/H.
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Proof. A maximal connected semisimple subgroup of G is determined by the

semisimple part of a Levi decomposition of the Lie algebra g of G. Any two

such subgroups are conjugate so it’s enough to show the result for any of them.

Let first K a maximal compact subgroup of G. By lemma (3.4.3) K acts transi-

tively on G/H . Since π1(G/H) finite by lemma (3.4.4) the maximal semisimple

subgroup of K again acts transitively on G/H . This subgroup is contained in a

maximal semisimple subgroup of G, which therefore acts transitively on G/H .

3.4.2 Proof of Boothby’s result

Let M a compact complex simply connected contact manifold. By a result of

Bochner and Montgomery ( see [Kob95]) the group of analytic diffeomorphisms

of M is a complex Lie group ( the compactness of M is essential). The subgroup

leaving invariant the contact structure can be given by complex equations and

is thus a complex Lie subgroup of the group of diffeomorphisms of M . Thus we

can write M = G/P where G is a complex Lie group and G acts by contact

diffeomorphisms on M . Moreover, by the results above we may assume that G is

connected and semisimple. Now we can apply the results of (3.1). Let ω 6= 0 in g∗

endowing G/P with the invariant contact structure . We show that we are not in

case considered in (3.1.4)) . Indeed, assume the contrary. Then we have a contact

structure on G/P 1. Now G/P being simply connected and Lie(P ) = Lie(P 1) it

follows that G/P is a cover of G/P 1. It follows that G/P 1 is compact. Now we

have a bundle G/P 1 → G/P 0 where G/P 0 is the orbit of ω in g∗. But this implies

the orbit of ω is again compact and thus ω = 0, contradiction. We observe

Lemma 3.4.6. Let g be a complex semisimple Lie algebra and X in g such that

the orbit of X in g under the adjoint action is compact. Then X = 0.

Proof. Consider G a complex connected Lie group with Lie algebra g. Then G has

a natural complex algebraic group structure and the adjoint action of G on g is

algebraic ( see [OV90]). It follows that the orbit of X is a quasiaffine subvariety of

g ( see [Bor91]). Being also compact it is necessarily projective (see [Mum95]). But

a connected projective subvariety of g consists of one point. Therefore X = 0
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Therefore we are in the first case ( see (3.1.3)). G/P is a cover of a projectivized

(co)adjoint orbit of ω. Moreover, ω = (X, ·) for some X nonzero nilpotent (

correspondence between coadjoint and adjoint orbits). Thus X is nilpotent and

its projectivized orbit is compact. It follows that X is in the minimal nilpotent

orbit. Now the minimal nilpotent orbit is itself simply connected because it is the

quotient of a simply connected group by a parabolic subgroup which is connected.

Therefore M = G/P is the minimal projectivized nilpotent orbit of a complex

simple Lie algebra.

3.4.3 A result of Wolf

The following result of Wolf ([Wol65] 2.5) recovers g from the its minimal

projectivized adjoint orbit as a complex contact manifold.

Theorem 3.4.7. Let G a connected simple complex Lie group, P a Heisenberg

parabolic. Consider the simply connected compact complex contact manifold G/P .

Then the connected component of the group of automorphisms of G/P is Gad, the

adjoint group of G.

For the proof we will need several lemmas.

Define a parabolic subgroup of a complex Lie group any subgroup containing

a maximal connected solvable subgroup ( Borel subgroup). These are defined not

only for reductive complex groups but for general complex Lie groups. Now a

quotient by a parabolic subgroup is compact. We have the partial converse due to

Tits ( see [Tit63]):

Proposition 3.4.8. Let A a complex Lie group, E a closed complex Lie subgroup

such that A/E is compact. Then the normalizer N(E0) of the unit connected com-

ponent E0 of E in A is a parabolic subgroup, that is, it contains a Borel subgroup.

Proof. Note that E normalizes E0 so we have E0 ⊂ E ⊂ N(E0). Let a, e the Lie

algebras of A, E. Let e = dim E = dim e. Consider the action of A on P(∧e(a))

coming from the adjoint action of A on a. Let p = [∧e(e)] the point corresponding

to the subspace e of a. The stabilizer of p is N(E0). We therefore have a map
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of analytic manifolds A/N(E0) → ∧e(a). Since the source is a compact manifold

by a theorem of Remmert (see [Whi72]) the image - that is O, the orbit of p -

is a compact analytic subvariety of P(∧e(a)). Moreover, since A acts transitively

the orbit of p has no singular points. Now using a theorem of Chow ([Cho49]) we

conclude that O is a projective subvariety of P(∧e(a)).

Let now B a connected solvable subgroup of A ( for example a Borel subgroup).

The image B1 of B in GL(a) under the adjoint action may not an algebraic sub-

group but B2 the Zariski closure of the image will be again a solvable connected

algebraic subgroup of GL(a). Moreover, B1 leaves invariant the Zariski closed sub-

set O ⊂ P(∧e(a)). It follows that B2 also leaves invariant O. It follows that B2 is a

solvable connected algebraic group acting on the projective variety O and so it has

a fixed point a · p ( see [Bor91]). We conclude that B is contained in a conjugate

aN(E0)a
−1 of N(E0). Therefore, N(E0) contains a conjugate of B and so it is a

parabolic subgroup.

We note the following well known fact.

Lemma 3.4.9. Let G a complex connected semisimple Lie group and V a finite

dimensional representation of G. Let v in V \{0} such that the orbit G[v] is closed

in P(V ). Then v is a highest weight vector and thus Span(Gv) is an irreducible

subrepresentation of V .

Proof. G has a natural complex algebraic group structure of and the action G ×

P(V ) → P(V ) is algebraic. It follows that the orbit G[v] is a quasiprojective

subvariety of P(V ). and being closed in the standard topology it follows that

G[v] is a Zariski closed subset of P(V ) and so a projective variety. Let B a Borel

subgroup of G. The action of B on the projective variety G[v] has a fixed point

gv by Borel’s fixed point theorem ( see [Bor91]). Thus g−1Bg leaves invariant [v]

and so v is a highest weight vector for the Borel subgroup g−1Bg. It follows now

( see [Ser01]) that Span(Gv) is an irreducible subrepresentation of V .

The following lemma and its proof was suggested by Wallach. Let G a complex

semisimple Lie group. Recall ( [FH91] p. 388) that for every parabolic subgroup
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of G there exist a finite dimensional irreducible representation V of G with highest

weight vector v such that the stabilizer of [v] in P(V ) is P . We have

Lemma 3.4.10. Let G a complex semisimple Lie group, V an irreducible repre-

sentation of G with highest weight vector v and P the parabolic subgroup of G the

stabilizer of [v] in P(V ). Let G′ a semisimple subgroup of G such that G′ acts tran-

sitively on the homogenous space G/P . Then the restriction of the representation

V to G′ is irreducible.

Proof. Consider V as a representation of G′. The orbit of [v] in P(V ) is G′[v] =

G[v] = G/P and therefore closed. From (3.4.9) it follows that v is a highest weight

vector for V as representation of V ′ and therefore Span(G′v) is an irreducible

representation of G′. But G′v = Gv and Span(Gv) = V since V is an irreducible

representation of G. It follows that V is an irreducible representation of G′.

We have now the following consequence

Proposition 3.4.11. Let G a complex connected simple Lie group and P a Heisen-

berg parabolic. Let G′ a semisimple subgroup of G such that G′ act transitively on

G/P . Then G′ = G

Proof. Consider the adjoint representation of G on g. Now P is the stabilizer of

[X] in P(g) where X is a highest weight vector in g, that is a minimal nilpotent.

Using the lemma (3.4.10) we conclude that g is an irreducible representation of

G′. But g′ is a nonzero subrepresentation of g. We conclude that g′ = g and so

G′ = G.

We have the following lemma concerning groups of automorphisms of flag va-

rieties. Note that for G complex connected semisimple Lie group, P a parabolic

subgroup, the group Aut(G/P ) of automorphisms of G/P as a complex variety is

a complex Lie group that naturally contains Gad – the adjoint group of G .

Lemma 3.4.12. Let G a complex connected semisimple Lie group, P a parabolic

subgroup of G and A a connected Lie subgroup of Aut(G/P ) containing Gad. Then

A is semisimple.
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Proof. We may assume G = Gad – a connected group of adjoint type, by replacing

G with Gad and P by its image in Gad. Then G acts faithfully on G/P and so

we have G ↪→ A. We have G/P = A/E where E is the stabilizer of the point ē

and P = G ∩ E. Since G/P = A/E is simply connected we conclude that E is

connected. Let N = N(E) the normalizer of E in A. We have A/N = G/(N ∩G).

Now N∩G normalizes E and so E∩G = P . However P is a parabolic subgroup and

so its own normalizer. We conclude N ∩ G = P . But then A/N = G/P = A/E

and so N = E. Let now R the solvable radical of A ( the largest connected

solvable normal subgroup of A). From the result of Tits above (3.4.8) it follows

that a conjugate of R is contained in N , and so, R being normal, R is contained in

N = E. But then R acts trivially on A/E. Since A is a group of transformations

of M = A/E we conclude R = {1}. Therefore A is semisimple.

We can now give the proof of (3.4.7).

Proof. Again we may assume that G is of adjoint type, that is G = Gad. Like

in the proof of the theorem of Boothby in (3.4.2) the group of automorphisms

of G/P as a complex contact manifold is a complex Lie group, denoted A(M).

Let A : = A0(M) the connected component of A(M). We have G ⊂ A. From

(3.4.12) it follows that A is semisimple. Let E the stabilizer of ē in A. Since

A/E = G/P is a compact homogenous contact manifold it follows ( see (3.1.3) )

that A is simple and E is a Heisenberg parabolic. Since the semisimple subgroup

G that acts transitively on A/E we conclude using (3.4.11) that G = A.

Note: One can show that in general if G is a complex simple Lie group of

adjoint type and P is a parabolic subgroup then the group of automorphisms of

G/P as a complex manifold equals G in ”most cases”. For a list of exceptions, see

[Tit63], [Dem77]. A remarkable exception is the minimal projectivized nilpotent

orbit of the group PSp(2n, C) which is diffeomorphic to P2n−1(C). The group of

automorphism as a complex contact variety is PSp(2n, C) by the above, but the

group of automorphisms as a complex variety is PSL(2n, C).
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3.5 The role of the Heisenberg Group

3.5.1 Definitions

A reference for Heisenberg groups and algebras is [Kir04].

A Heisenberg Lie algebra is a complex finite dimensional Lie algebra n such

that [n, [n, n]] = 0 and the center of n is 1-dimensional. It follows that the skew-

symmetric bilinear map n×n → [n, n] is nondegenerate. All Heisenberg Lie algebras

of the same dimension are isomorphic. We can get a Heisenberg Lie algebra as

follows: Let V a complex vector space of even dimension and B : V × V → C a

bilinear skewsymmetric nondegenerate form. Then n = C ⊕ V with the bracket

[(a, v), (a′, v′)] = (B(v, v′), 0) is a Heisenberg Lie algebra.

A Heisenberg group over C is a complex connected and simply connected Lie

group H with its Lie algebra Lie(H) a Heisenberg algebra. All Heisenberg Lie

groups of the same dimension are isomorphic. We can get a Heisenberg Lie algebra

as follows: Let V a complex vector space of even dimension and B : V × V → C

a bilinear form such that the skewsymmetric form (v, v′) 7→ B(v, v′) − B(v′, v) is

nondegenerate. Then H = C ⊕ V with multiplication [(a, v) · (a′, v′)] = (a + a′ +

B(v, v′), v + v′) is a Heisenberg Lie group.

Let H a Heisenberg Lie group and n : = Lie(H) its Lie algebra. The expo-

nential map exp: n → H is a diffeomorphism. The multiplication in logarithmic

coordinates is given by

exp(X) · exp(X ′) = exp(X + X ′ +
1

2
[X, X ′]) (3.10)

This also follows from the Campbell-Hausdorff formula using [n, [n, n]] = 0

3.5.2 The Heisenberg group as a group of matrices

Recall that if G is a complex simple Lie group there exists a unique up to

conjugacy parabolic subgroup of G such that its unipotent radical is a Heisenberg

Lie group ( existence and uniqueness of the Heisenberg parabolic).
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In the case G = SL(n, C) we get the unipotent radical of a Heinseberg parabolic

( the opposite of the standar one) H the group of matrices of form

x =





















1

q1 1
...

. . .

qn 1

z p1 . . . pn 1





















(3.11)

Denote this also by

x = (p1, . . . , pn, q1, . . . , qn, z) (3.12)

If we have also

x′ = (p′1, . . . , p
′
n, q

′
1, . . . , q

′
n, z) (3.13)

then

x · x′ = x′′ = (p′′1, . . . , p
′′
n, q

′′
1 , . . . , q

′′
n, z′′) (3.14)

where

p′′i = pi + p′i

q′′i = qi + q′i

z′′ = z + z′ +
∑

j

pj · q
′
j

Let n be the Lie algebra of the Lie group H . It is a Heisenberg Lie algebra and it

consists of matrices of form

X =





















0

q1 0
...

. . .

qn 0

z p1 . . . pn 0





















(3.15)

Denote this also by

X = {p1, . . . , pn, q1, . . . , qn, z} (3.16)
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The bracket in the Lie algebra n is

[X, X ′] = X ′′ (3.17)

where

X ′′ = {0, . . . , 0,
n
∑

i=1

(piq
′
i − p′iqi)} (3.18)

3.5.3 The Canonical 1-form

Consider the imbedding of H into G = SL(n, C). The (left invariant) Maurer-

Cartan form is ω = X−1 · dX. Let P the Heisenberg parabolic subgroup of

SL(n, C), the stabilizer of [E1n] in P(sl(n, C). The contact 1-form on G/P is

φ ◦ ω where φ : sl(n, C) → C, A
φ
7→ Tr(E1n · A). Consider the restriction of this

1 − form to h = Lie(H). Let x a generic element of H as in (3.11). We have the

Maurer-Cartan form on H

X =





















1

−q1 1
...

. . .

−qn 1

−z +
∑

piqi −p1 . . . −pn 1





















·





















0

dq1 0
...

. . .

dqn 0

dz dp1 . . . dpn 0





















·

We get the contact 1-form on H

α = dz −
∑

pidqi (3.19)

3.5.4 Calculations in logarithmic coordinates

The pullback of the contact form α from H to h is the contact 1-form on h

given in coordinates pi, qj, z by

β = d(z +
1

2

n
∑

i=1

piqi) −
∑

pidqi = dz −
1

2

∑

(pidqi − qidpi) (3.20)
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3.5.5 Right Invariant Vector Fields

This is to recall some standard constructions for right invariant vector fields

on subgroups of GL(n, C). Let A in M(n, C). Consider the right invariant vector

field

(XA(f))(x) =
d

dt
f((I + tA)x)|t=0 (3.21)

(see [GW98])

Let Eij is an elementary matrix. Let x =
∑

kl xklEkl. We have

x + tEijx = x + tEijxjlEjl = x + tEilxjl

Conclude:

XEij
=
∑

l

xjl
∂

∂il

(3.22)

3.5.6 The Heisenberg group - big cell in the minimal nilpo-

tent orbit

Let G a complex connected simple Lie group. Let P a Heisenberg parabolic

subgroup. We have showed that the complex compact simply connected manifold

G/P has a homogenous contact structure. Now consider N− the nilpotent radical

of an opposite parabolic P− of P . N− is a Heisenberg group and from the theory

of Bruhat decomposition we have an embedding

N− → G/P (3.23)

with the image a (Zariski) dense open subset of G/P . The canonical contact

structure on G/P restricts to a left invariant contact structure on N− that can be

given by a 1-form (3.19). The action of G on G/P induces a map of Lie algebras

Φ: g → V ect(G/P ) where V ect(G/P ) is the (infinite-dimensional) Lie algebra of

vector fields on G/P . Since G leaves invariant the contact structure on G/P ,

for every X in g the vector field Φ(X) is a contact vector field on G/P . This

restricts to a contact vector field on N−. Now we have a morphism from the

contact vector fields on N− to functions on N− given by the contact Hamiltonian.
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We thus get a morphism of Lie algebras from g to the algebra of functions on N−

with the Legendre bracket. Moreover, the restriction of the map from n− maps

to polynomials, in fact to L<0. It follows that we get another realization of the

extension g → L.



4 The invariant of degree 4

4.1 A symplectic representation

Let g a finite dimensional simple Lie algebra over C. Let h be a Cartan subal-

gebra, R the root system associated to (g, h).

Fix a root order of R. Let β be the largest root corresponding to this ordering (

see (1.1)). Let β∨ the coroot associated to β. We have β∨ ∈ [gβ, g−β] ⊂ h. Then

ad(β∨) acts semisimply on g with eigenvalues in the set {−2,−1, 0, 1, 2}. Let

gi = {X ∈ g | ad(β∨)(X) = i · X} (4.1)

Since ad(β∨) is a derivation of g we get a grading of the Lie algebra g

g =

2
⊕

i=−2

gi (4.2)

Let p = ⊕i≥0gi. p is a parabolic subalgebra with nilpotent radical n = g1 ⊕ g2

which is a Heisenberg algebra. Moreover, p is the unique parabolic subalgebra of

g containing b and having for the nilpotent radical a Heinseberg algebra.

Now g0 is a Levi component of p. We have

g0 = h ⊕
⊕

β̂(α)=0

gα (4.3)

Decompose g0 as follows

g0 = Cβ∨ ⊕ m (4.4)

where

m = ker(β) ⊕
⊕

β̂(α)=0

gα (4.5)

We have the following result ( see [GW96] p. 76) :

63
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Proposition 4.1.1. 1. The Lie algebra m is reductive with Cartan subalgebra

m ∩ h = ker β ⊂ h. The simple roots of m ∩ h on m ∩ b consists of those αi

in B which are orthogonal to β.

2. m acts trivially on the root spaces gβ and g−β so acts symplectically on g−1

and g1

The reductive algebra m can be determined from the extended Dynkin diagram

of g ( [GW96]). The vertices of the usual Dynkin diagram correspond to the roots

in the basis B. The extended vertex corresponds to the lowest root −β. Vertices

of the diagram corresponding to roots α, α′ are connected if 〈α, α′〉 6= 0. The

Dynkin diagram of m is obtained by removing all the vertices in the subset of B of

S which are connected to the extended vertex. Note that S consists of one vertex

and m is semisimple, except when g of type Al, l = d + 1 ≥ 2 when S = {α1, αl}

and m = gld. The table (4.1) describes the m’s for different g’s.

Note that m is the intersection of the stabilizer of Xβ and X−β. The repre-

sentations of m on g1 and g−1 are isomorphic. Denote by V either of them. The

representation V is symplectic of dimension 2d and is irreducible if g is not of type

Al, l ≥ 2. As in [GW98] let MC the complex connected Lie group with Lie algebra

m that acts faithfully on g−1 ( and g1). The table (4.1) ( see [GW98]) describe the

group MC and the representation V for different simple Lie algebras g.

4.2 The invariant of degree 4

Gross and Wallach [GW96] show that the algebra of invariants S•(V )M is a

polynomial algebra in one generator except when g is of type Cl:

Proposition 4.2.1. The algebra of invariants in S•(V ) is given by

S•(V )M =















C if g is of type Cl, l ≥ 1 ,

C[f2] if g is of type Al, l ≥ 2 ,

C[f4] if g is not of type C or A,

(4.6)

where f2 ∈ S2(V ) has degree 2, and f4 ∈ S2(V ) has degree 4.
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Table 4.1: The reductive subalgebra m for different g’s

g Extended diagram with vertices in S circled m

Al = sld+2 •

TTTTTTTTTTTTTTTTTTTT

�

−β
ooooooooooooooo

• • • • �

gld

Bl = sod+4

d odd •

@@
@@

@@
@

�

−β

~~
~~

~~
~~

~
• • • • • +3 •

•

sl2 ⊕ sod

Cl = sp2d+2 • �−β
+3 • • • • ks • sp2d

Dl = sod+4

d even •

@@
@@

@@
@ •

�

−β

~~
~~

~~
~~

~
• • • • •

�������

??
??

??
??

• •

sl2 ⊕ sod

G2 • �−β
_ *4 • sl2

F4 • �−β
• +3 • • sp6

E6 • • • • •

�

−β
•

sl6

E7 • �−β
• • • • •

•

so12

E8 • • • • • • � −β
•

•

E7
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Table 4.2: The Representation V of MC

g MC V

A GLd(C) Cd ⊕ (Cd)∗

B SL2(C) × SOd(C) C2 ⊗ Cd

C Sp2d(C) C2d

D SL2(C) × SOd(C)/∆µ2 C2 ⊗ Cd

G2 SL2(C) S3(C2) of dim 4

F4 Sp6(C) (∧3
C

6)0 of dim 14

E6 SL6(C)/µ3 ∧3
C

6 of dim 20

E7 Spin12(C)/µ2
1
2
− spin of dim 32

E8 E7(C) minuscule of dim 56

Also, MC has an open dense orbit O on P(V ) and we have in the case g not of

type C we have [X] ∈ O if and only if f(X) 6= 0 where f is the minimal invariant

( [Wal03]).

One can describe easily the minimal invariant in the classical cases. Since the

representation V is self-dual it’s enough to give an invariant form on V of degree

2 or 4.

If g is of type A we have MC = GLd = GL(W ) and V = W ⊕ W ∗. Let {wi}

a basis of V and {w∗
i } the dual basis in W ∗. Write v in V as v =

∑

aiwi + biw
∗
i .

The invariant quadratic form is

f ∗
2 (v) =

∑

aibi (4.7)

If g is of type B or D, MC is a quotient of SL2 × SOd and V = U ⊗ W . Let

{u1, u2} a symplectic basis for U and ( , ) the orthogonal form on W . Any v in

V is written uniquely as v = u1 ⊗ w1 + u2 ⊗ w2 with w1, w2 in W . The invariant

quartic form is

f ∗
4 (v) = (w1, w1)(w2, w2) − (w1, w2)

2 (4.8)

If g is of type C then MC = Sp2d(C) and V = C
2d and so MC acts transitively

on V \{0}, hence S•(V )M = C
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In [GW96] Gross and Wallach introduce a certain canonically defined element

f of the symmetric algebra S•(V ) that is invariant under the action of MC.

Let X ∈ g−1. Take Xβ in gβ , X−β in g−β such that [Xβ , X−β] = β∨. Since g is

a graded Lie algebra and Xβ ∈ g2 we have ad(X)4Xβ ∈ g−2 . Therefore ([GW96])

there exists a constant depending on X f(X) such that

ad(X)4(Xβ) = f(X) · X−β (4.9)

Since X 7→ ad(X)4 is homogenous of degree 4, f(X) is a polynomial of degree 4

in X. Moreover f is an invariant of the action of m on g−1. Indeed, write the

polarized equality

ad(X1) ◦ . . . ◦ ad(X4)(Xβ) = B(X1, X2, X3, X4) · X−β (4.10)

for Xi ∈ g−1. Now take Y ∈ m and apply ad(Y ) to the above equality Since

ad(Y )(Xβ) = 0 and ad(Y )(X−β) = 0 we conclude that the multilinear form B is

invariant under the action of m. Therefore f is invariant under the action of m

and so invariant under MC.

It follows that if g is of type C we have f = 0, if g is of type A then f = f 2
2

and in the other cases f = f4.

Note that if g is not of type C we can reduce the calculation of f to the case

g of type A2 as follows. Let X in g−1 such that f(X) 6= 0. Then ( citeWa03) the

Lie algebra generated by X and Xβ is isomorphic to sl(3, C). We get therefore an

imbedding sl(3, C) → g compatible with the grading g = ⊕gi. The restriction of

the invariant f to sl(3, C)−1 will equal the invariant fsl(3,C) corresponding to this

copy of sl(3, C).

If g is not of type A or C the algebra of invariants is freely generated by a

quartic form f4. The generator can be given as follows: Recall that in this case m

is simple and V is irreducible, since g is not of type A. Then ( see [Wal03]and also

[LM02]) ) Sym2(V ) decomposes as

Sym2(V ) = V (2) ⊕ m (4.11)

where V (2) is the Cartan square of V and m is the adjoint representation of m. Let

p the projection of Sym2(V ) onto m.
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Proposition 4.2.2. ( see also [Wal03]) If B is the Killing form of m we have

f(X) = f ∗
4 (X) = B(p(X2), p(X2)) (4.12)

Proof. Since B is an invariant bilinear form on m we conclude that

X 7→ B(p(X2), p(X2)) is an invariant of degree 4. It is nonzero since m appears

in the decomposition (4.11) . Now we use the characterization of the algebra of

invariants and we conclude the result.

Note that if g is of type C we have Sym2(V ) = V (2) = m

We have now an important converse:

Theorem 4.2.3. Let m a complex Lie algebra and V a finite dimensional faithfull

irreducible representation of m such that

• the representation V is symplectic

• the algebra of invariants Symm(V ) ⊂ Sym(V ) is either C or freely generated

by one element f

• we have the inclusion

Sym2(V ) ⊂ V (2) ⊕ m (4.13)

Then m with the representation V is obtained from a simple Lie algebra g of type

not A by the above procedure.

Proof. Since m has an irreducible faithful representation it follows that m is re-

ductive. The center of m acts by scalars ( by Schur lemma) and faithfully and so

dim Z(m) ≤ 1. However, since m acts symplectically it follows that m is semisim-

ple.

Let M the semisimple connected subgroup of GL(V ) with the Lie algebra m.

We distinguish two cases:

Case 1. The algebra of invariants of M is C.

It will follow that M is simple. Indeed, otherwise we have M = M1×M2 where

M1, M2 semisimple and V = V1 ⊗ V2 where dim Vi ≥ 2. . Now, the representation

V is symplectic and we may assume that V1 is symplectic and V2 is orthogonal.
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Therefore M1 ⊂ Sp(V1) and M2 ⊂ SO(V2). However, the representation V1 ⊗ V2

has an Sp(V1) × SO(V2) has an invariant of degree 4 and therefore it has an

M = M1 ×M2 invariant of degree 4, contradiction. We conclude that M is simple.

Now using the list of [KPV76] we see that the only case when M is simple and

the M is C is the case of the groups with an open orbit on V ( locally transitive

in their terminology). with the following possibilities:

1. SLn(C) with the standard representation ( or its dual) for n ≥ 2

2. SLn(C) with ∧2(Cn) ( or its dual) for n odd

3. Spn(C) with the standard representation

4. Spin10(C) with the half-spin representation

Of these only the ones in 1) for n = 2 and 3) are self dual. We obtain M = Spn(C)

with the standard representation. This comes from g a simple algebra of type C.

Case 2. The algebra of invariants of M is freely generated by a form f .

We conclude ( see [Kra84]) that the codimension of a generic closed orbit of M

on V is 1. Consider the reductive group C××M ⊂ GL(V ). It is a reductive group

acting irreducibly on V . From the above it follows that C××M has an open orbit

on V . Therefore V is a prehomogenous vector space for C××M ( see [SK77] ). Now

V is equivalent to a unique reduced prehomogenous representation. We have a list

of all the reduced ones. Let’s assume that V is not reduced. Consider a castling

transform ( see again [SK77]) from V as representation of M ×C× = M ×GL(1).

We must have M = M1 × SL(m) and so M × GL(1) = M1 × GL(m). Moreover

V = V1 ⊗ Cm. Therefore M = M1 × SL(m). Moreover, the representation Cm

of SL(m) is self dual and therefore m = 1 or m = 2. Since we have a castling

transformwe conclude m = 2. The castling transform will be from V = V1 ⊗ Cm

to V ∗
1 ⊗ Cn−m as representation of M1 × GL(n − m) where n = dim V1. Since we

assume that V is not reduced we must have n−m = 1 and so n = 3. We conclude

that V ∗
1 ⊗ Cn−m as representation of M1 × GL(n − m) is reduced. We conclude

using the list of Sato and Kimura pp. 141-142 that M1 = SO(3) and V1 = C3.

Therefore M = SO(3) × SL(2) with the representation V = C3 ⊗ C2.
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We are left with the case V is a reduced representation of C× × M .

The case when M was simple can be analysed using again the tables from

[KPV76] and we see that the only cases when Sym•(V ∗) is freely generated by one

element (under our hypotheses we have V ' V ∗ ) are

1. SOn(C) (n 6= 4) with the standard representation,

2. SLn(C) with ∧2(Cn) for n even

3. SLn(C) with ∧3(Cn) for n = 6, 7, 8

4. SL2(C) with Sym3(C2)

5. Sp6(C) with ∧3
0(C

6)

6. Spinn(C) with the (1
2

-) spin representation for n = 7, 9, 11, 12, 14

7. E6(C), E7(C), G2(C) with the the representations of smallest dimension

We will go through the list and check that M with the representation V is either

coming from a simple Lie algebra ( see Table 4.1) or is not a symplectic represen-

tation or we have the case Spin11(C) with the spin representation.

Recall ( [FH91]) that a symplectic representation V is self-dual ( V ' V ∗). A

self-dual representation is either symplectic ( it has an nondegenerate alternating

invariant bilinear form) or orthogonal ( it has a symmetric invariant bilinear form).

The standard representation Cn of SOn(C) has ( obviously) an invariant sym-

metric bilinear form and hence is not symplectic.

The representation ∧2(Cn) of SLn(C) has as dual ∧n−2(Cn). Hence ∧2(Cn)

is self dual only for n = 4. However, ∧2(C4) is an orthogonal representation of

SL4(C) and therefore not symplectic.

∧3(Cn) is self-dual only for n = 6. This situation occurs in the table 4.1 for

the simple Lie algebra g of type G2.

Sp6(C) with ∧3
0(C

6) occurs again in the table.

For n natural number the spin representation of Spin2n+1(C) is self dual. It

is orthogonal if n ≡ 0, 3( mod 4) and symplectic if n ≡ 1, 2( mod 4). Also the
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half-spin representations of Spin2n(C) are dual to each other if n is odd, symplectic

if n ≡ 2( mod 4) and orthogonal if n ≡ 0( mod 4). ( see [FH91]). The half-spin

representation of Spin12(C) occurs in the table 4.1. ( note that there are 2 half-

spin representations and one is taken into the other by an outer automorphism of

of Spin12(C)).

Sym3(C2) and ∧3
0(C

6) again occur in the table.

The 2 representations of minimal degree 27 of E6(C) are one dual of the other,

hence not self dual. The representation of minimal degree 7 of G2(C) is orthogonal

and hence not symplectic.

E7(C) with its minuscule representation of dimension 56 occurs in the table

4.1.

Therefore the only possible exception is Spin11(C) with V the spin representa-

tion of dimension 32. We have however

Sym2(V ) = V (2) ⊕ spin11(C) ⊕ C
11 (4.14)

where V (2) is the Cartan square of V , spin11 is the adjoint representation of

Spin11(C) and C11 is the standard 11 dimensional representation of SO11(C).

We consult now again the list of Sato and Kimura ( the case : the dimension

of the center is 1) The case when M was simple was analysed already. We are left

with analysing

Case 1) ( item 1 on the list) M = M1 × SL(2) with V = V1 ⊗ C
2 and V1 is a

2-dimensional irreducible representation of M . It follows that M1 = SL(2) and so

the representation is not orthogonal

Case 2) ( item 17 on the list) M = Spin(7)×SL(2). The decomposition is not

right, there is an extra term.

Case 3) ( item 22 on the list) M = Spin(11). The decomposition is not right

again

Case 4) ( item 28 on the list ) M = E6 × SL(2). Again the decomposition is

not right.

In the other cases from the list I the representation is not symplectic or confirms

the theorem. For the list II we only have to consider M = Sp(n)×SO(3), n even.
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However, for n > 2 the algebra of invariants is not free since dimSym4(Cn⊗C3) = 1

but dim Sym8(Cn ⊗ C3) = 2.

For the list III there are no relative invariants.

4.3 Calculations for type Al

We calculate from definition the invariant of Gross and Wallach for g of type

A.

Let g = sl(n, k).Take

X = x2E12 + x3E13 + . . .+ xn−1E1,n−1 + y2E2,n + y3E3,n + . . .+ yn−1En−1,n (4.15)

We have

ad(X)(En,1) = [X, En,1] = −x2En,2−x3En,3−. . .−xn−1En,n−1+y2E21+. . .+yn−1En,1

(4.16)

ad(X)2(En,1) = ad(X)(−
n−1
∑

l=2

xlEn,l +
n−1
∑

l=2

ylEl,1) =

=
n−1
∑

l=2

xlyl(E11 − Ell) − 2
∑

k 6=l

ykxlEkl −
n−1
∑

l=2

xlyl(Ell − Enn) =

=

(

n−1
∑

k=2

xkyk

)

· (E11 + Enn) − 2
n−1
∑

k,l=2

xlykEkl (4.17)

ad(X)3En,1 = [X,

(

n−1
∑

k=2

xkyk

)

· (E11 + Enn) − 2
n−1
∑

k,l=2

xkykEkl] =

−

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

xlE1l − 2

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

xlE1l +

+

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

ylEln + 2 ·

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

ylEln =

= −3

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

xlE1l + 3

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

ylEln
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Finally

ad(X)4(En1) = [X,−3

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

xlE1l + 3

(

n−1
∑

k=2

xkyk

)

n−1
∑

l=2

ylEln] =

= 6

(

n−1
∑

k=2

xkyk

)2

E1,n (4.18)

We see therefore that

f(X) = 6

(

n−1
∑

k=2

xkyk

)2

(4.19)

4.4 Link with the Mukai form

The negative part of g , g−1 ⊕g−2 is a Heisenberg algebra. It follows that there

exists a unique morphism from g to the polynomial algebra P = C[pi, qj, z] with

the Legendre bracket such that X−β 7→ 1 and g−1 maps to ⊕Cpi ⊕⊕Cqj .

Now β∨ maps to 2z −
∑

piqi, the unique scaling element. Denote this by z̃.

Moreover, Xβ maps to a homogenous polynomial P of degree 4 (see (1.83) which

can be written as

P = −
1

4
(2z −

∑

piqi)
2 + F (pi, qj) (4.20)

for some polynomial of degree 4 F (pi, qj) in pi, qj. Indeed, we have

[Xβ, X−β] = β∨

and so

{P, 1} = 2z −
∑

piqi

But we have in general {P, 1} = ∂P
∂z

.

Now let l a linear form in pi, qj . Then we have

ad(l)4(z̃2) = 0 (4.21)

in the Lie algebra P. Indeed, for any l linear polynomial in pi, qj the map

P 7→ {l, P} = ad(l)(P )
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is a derivation. Therefore we have

ad(l)4(z̃2) =

4
∑

k=0

(

4

k

)

ad(l)k(z̃) · ad(l)k(z̃)

In the sum above, for each 0 ≤ k ≤ 4 at least one of the numbers k, 4 − k is ≥ 2.

Now we have

ad(l)2(z̃) = ad(l)(ad(l)(z̃)) = ad(l)(−grade(l) · l) = 0

the last equality since z̃ is a scaling element for the Lie algebra P.

In fact we have

ad(l)(z̃2) = −2lz̃

ad(l)2(z̃2) = 2l2

ad(l)3(z̃2) = 0

Moreover , for any homogenous form of degree 4 in pi, qj we have

ad(l)4(F ) = c · F (l) (4.22)

for some constant c that depends only on n.

Now compare this with the equality (4.9). If follows that:

Theorem 4.4.1. The invariant of degree 4 of Gross and Wallach coincides up to

a constant with the polynomial of degree 4 of Mukai.

4.5 Another proof for the invariant of degree 4

Let g a simple Lie algebra with the grading like in (4.2). By (1.4.1) we have a

commutative diagram of graded Lie algebras

g<0
j //

!!C
CC

CC
CC

C L

g

∃!

OO (4.23)

where j is an isomorphism onto L<0. Let now φ an automorphism of the graded

Lie algebra g = ⊕2
i=−2gi. Now φ induces an automorphism of g<0 = n = n−2 ⊕ n−1
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and therefore an automorphism of L. By the universal property of g<0 → L we

have the commutative diagram :

g<0
j //

!!B
BB

BB
BB

B L

g<0
j //

""EE
EE

EE
EE

E

φ
<<yyyyyyyy

L

φ
==||||||||
g

OO

g

OO
φ

=={{{{{{{{{

(4.24)

Assume now φ = Ad(m) where m ∈ MC. Then φ is a symplectic automorphism of

g−1 = V . This extends uniquely to an automorphism of the graded Lie algebra L.

This will be the uniquely automorphism of L as an associative algebra that takes

z̃ to itself and on C[pi, qj ] ' S ·(V ) is given by the (extension of ) m.

Let Xβ a vector in gβ where β is the largest root. Since m ∈ MC it follows

that m fixes Xβ in g. Let the image of Xβ in L be −1
4
z̃2 + F (pi, qj) (see (1.83))

. Since m fixes Xβ in g it follows from (4.24) that the extension of m to L fixes

the image of Xβ. We conclude that m invariates the form F (pi, qj). Therefore the

form F (pi, qj) is an invariant of MC. Since the algebra of invariants has dimension

≤ 1 in degree 4 it follows that the form F coincides with the invariant of Gross

and Wallach. This proves the theorem (4.4.1).

Note that we can obtain all the complex simple Lie algebras except the ones of

type A as subalgebras of the Legendre algebra L in the following way: Consider the

symplectic vector space V = L−1 and m a Lie subalgebra of sp(L−1) such that m

acts irreducibly and the algebra of invariants of m is freely generated by one form

or equals C. Assume moreover the condition (4.13) . Let F (pi, qj) an invariant of

degree 4 (unique up to multiplication by a constant). Then the Lie subalgebra of

L generated by L−1 and −1
4
z̃2 + F (pi, qj) is a simple Lie algebra.



5 Another form for the Legendre

Algebra

5.1 Some general algebraic results

The universality property of the tensor product of modules provides two pairs

of adjoint functors. The setup is as follows:

Let M be an (A, B) module, N a (B, C) module and let P be an (A, D) module.

Then the following are naturally isomorphic as (C, D) modules

HomB(N, HomA(M, P )) ' HomA(M ⊗B N, P ) (5.1)

We have two important particular cases of this

I. B → A morphism of rings and M = A. Our isomorphism becomes

HomB(N, HomA(A, P )) ' HomA(A ⊗B N, P ) (5.2)

Note that HomA(A, P ) as a B module is P with scalars restricted from A to B,

while A ⊗B N is the extension of scalars from B to A applied to N .

II. A → B morphism of rings and M = B. Our isomorphism becomes

HomB(N, HomA(B, P )) ' HomA(B ⊗B N, P ) (5.3)

Note that B ⊗B N is the restriction of scalars from B to A applied to N and

HomA(B, P ) is the coextension of scalars from A to B.

76
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5.2 Coinduced modules for Lie algebras

Let g be a Lie algebra over C and let p be a subalgebra. Then we have the

inclusion of enveloping algebras U(p) ⊂ U(g). Let N a U(g)-module and P a

U(p)-module. Then we have the isomorphism

HomU(g)(N, HomU(p)(U(g), P )) ' HomU(p)(N, P ) (5.4)

HomU(p)(U(g), P ) is called the coinduced module from p to g of the p-module P .

5.3 An important particular case

Let g be a Lie algebra over C and let p be a subalgebra. Take N = g, a U(g)-

module and P = C with a U(p)-module action given by a linear map −β : p → C,

notation P = C−β. We conclude that here exists an isomorphism

HomU(g)(g, HomU(p)(U(g), C−β)) ' HomU(p)(g, C−β) (5.5)

Let’s make the correspondence explicit. There exists a bijection between U(g)-

maps from g to HomU(p)(U(g), C−β) and linear maps f : g → C such that f([Y, X]) =

−β(Y ) · f(X) for all Y ∈ p and X ∈ g. Note that it’s possible that the only such

linear map f is the zero map. The previous condition means that f ∈ g∗ is an eigen-

vector for p with weight β ( or zero). Analysing the isomorphism (5.3) we obtain the

following: To f as above corresponds the map F : g → HomU(p)(U(g), C−β) given

by F (X)(x) = f(x·X) for all X ∈ g and x ∈ U(g). Note that for x = X1 ·. . .·Xm ∈

U(g) and Xi ∈ g we have x · X = (X1X2 . . .Xm) · X = [X1, [X2, . . . [Xm, X]] . . .]

5.4 The case of a parabolic subalgebra

We continue with notations as above, assume moreover g is a simple Lie algebra

and p is a parabolic subalgebra. The Killing form of g, denoted by 〈, 〉 is nonde-

generate. Therefore, any f in g∗ is given by f(·) = 〈E, ·〉 for a unique E ∈ g. Now

f ∈ g∗ is an eigenvector for p with weight β if and only if E is an eigenvector for p
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with weight β. (Note that the adjoint representation of g is self dual, consequence

of the nondegeneracy of the Killing form). Assume this is the case. Let b the

unique Borel subalgebra contained in p. Then E is a highest weight vector for the

adjoint representation of g. Therefore, E = Eβ where β is the largest root of (g, b).

Also we conclude that p is contained in the Heisenberg parabolic corresponding to

the longest root β.

5.5 The case of Heisenberg Parabolic

Assume all as above and p is a Heisenberg parabolic. Therefore we have an

g-equivariant map

g → HomU(p)(U(g), C−β) (5.6)

given by

X 7→ φX(·), φX(x) = 〈Eβ, x · X〉 (5.7)

Note that the g module action on HomU(p)(U(g), C−β) is given by:

(Y · φ)(x) = φ(x · Y ) (5.8)

for Y ∈ g, x ∈ U(g). See [Wal69]

Let n be nilpotent algebra . For any n-module M denote by M[n] the submodule

of M consisting of elements annihilated by a large enough power U(n)l
+ of the

augmentation ideal U(n)+ of U(n). We note that the image of g under the map (5.6)

lies in HomU(p)(U(g)[n] for any n subalgebra of g consisting of nilpotent elements.

Indeed, the map (5.6) is g-equivariant and g = g[n].

Moreover the map (5.6) is an imbedding. Indeed, let X ∈ g such that φX(·) = 0.

It follows that 〈Eβ, x · X〉 = 0 for all x ∈ U(g). Now g is irreducible as a U(g)-

module and so U(g) · X = 0 or = g. Since 〈, 〉 is nondegenerate we conclude

U(g) · X = 0 and so X = 0.

We conclude that we have a g-equivariant embedding

g → HomU(p)(U(g), C−β)[n] (5.9)



79

5.6 Identification with the dual of the nilpotent

radical

Let p as above a Heisenberg parabolic subalgebra of g and n = n− the nilpotent

radical of the opposite of p. n is a Heisenberg algebra itself and we have n⊕p = g.

It follows that U(g) = U(p) ⊗ U(n). Therefore:

HomU(p)(U(g), C−β) ' Hom(U(n), C) (5.10)

as U(n)-modules and therefore

HomU(p)(U(g), C−β)[n] ' Hom(U(n), C)[n] (5.11)

We conclude: There exists an imbedding

g → HomC(U(n), C)[n] (5.12)

5.7 The annihilation of cohomology

The n-module HomC(U(n), C)[n] ( in fact a g-module as we have seen above)

has zero cohomology in dimension > 0. This follows from a more general result of

Wallach ( [Wal88]). More generally let n a finite dimensional nilpotent Lie algebra

and M an n-module. Define as above M[n] . Let W is a complex vector space.

Then Hom(U(n), W ) has a structure of n module ( i.e. U(n)-module). Define like

in [Wal69] N(W ) = Hom(U(n), W )[n]. Then we have

Lemma 5.7.1. With the hypotheses above we have H i(n, N(W )) = 0 for all com-

plex vector spaces W and for all i > 0.

Proof. Note that by additivity of the cohomology it’s enough to prove for dim W =

1 i.e. for W = C. However, the proof works as well for any W . We prove by

induction on dim n. Assume first that dim n = 1. It is known that H i(n, N(W )) =

0 for i > dim n. Thus we only have to prove that H1(n, N(W )) = 0. Let X a basis

of n. From the definition of cohomology we must show that N(W ) = X · N(W ).
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Let f in N(W ). That means f : U(n) → W linear and f(Xk) = 0 for k ≥ k0.

Define now g : U(n) → W , g(1) arbitrary ( say = 0) and g(Xk+1) = f(Xk). We

have X · g = f .

Assume that the result is true for dim n = d. Let now dim n = d + 1. Since n

is nilpotent we have [n, n] ⊂ n strictly. Take n1 a subspace of n of codimension 1

containing [n, n] and X ∈ n such that n = CX ⊕ n1. Then n1 is an ideal of n. By

P-B-W theorem (see [Ser06]) we have U(n) = ⊕k≥0X
kU(n1).

Since n1 is an ideal of n we have a Hochschild-Serre spectral sequence

Ep,q
2 = Hp(n/n1, H

q(n1, N(W ))) ⇒ H i(n, N(W )) (5.13)

By the induction hypothesis we have Hq(n1, N(W )) = 0 for q > 0. It follows that

H i(n, N(W )) = H i(n/n1, H
0(n1, N(W ))) (5.14)

Now H0(n1, N(W )) = N(W )n1 = Hom(U(n), W )n1

[n] = Hom(U(n/n1), W )[n/n1] Now

apply the induction hypothesis for n/n1. We conclude that H i(n, N(W )) = 0 for

i > 0.

5.8 A new realization of the algebraic

prolongation

Let again n a nilpotent algebra.

Lemma 5.8.1. Let M be an n-module such that M = M[n]. Assume moreover

that H1(n, M) = 0. Then M is isomorphic to N(Mn). In particular, we have

H i(n, M) = 0 for all i > 0.

For proof we use the following result of Wallach ( [Wal88])

Lemma 5.8.2. Let M , V in N . Assume that H1(n, V ) = 0.

• If A is in HomC(Mn, V n) then there exists T ∈ Homn(M, V ) extending A.

• If A is injective then T is also injective
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• If A is bijective and if H1(n, M) = 0 then T is surjective ( and so bijective)

Let now n a negatively graded Lie algebra of finite dimension with the center

concentrated in the lowest degree Z(n) = nj0 . Consider the algebraic completion

of n C(n) ( see part [2]). By the construction of C(n) it follows that H1(n, C(n))

is concentrated in negative degree. Assume moreover that all the homogenous

derivations of n of degree < 0 are inner. It follows that H1(n, C(n)) = 0. Note now

that C(n) and Hom(U(n), Z(n))[n] are both n-modules with the first cohomology

= 0. Using the above proposition we conclude

Theorem 5.8.3. The algebraic prolongation of n is naturally isomorphic to

Hom(U(n), Z(n))[n]
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