Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Systematic Identification of Barriers to Human iPSC Generation

Abstract

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. To elucidate endogenous barriers limiting this process, we systematically dissected human cellular reprogramming by combining a genome-wide RNAi screen, innovative computational methods, extensive single-hit validation, and mechanistic investigation of relevant pathways and networks. We identify reprogramming barriers, including genes involved in transcription, chromatin regulation, ubiquitination, dephosphorylation, vesicular transport, and cell adhesion. Specific a disintegrin and metalloproteinase (ADAM) proteins inhibit reprogramming, and the disintegrin domain of ADAM29 is necessary and sufficient for this function. Clathrin-mediated endocytosis can be targeted with small molecules and opposes reprogramming by positively regulating TGF-β signaling. Genetic interaction studies of endocytosis or ubiquitination reveal that barrier pathways can act in linear, parallel, or feedforward loop architectures to antagonize reprogramming. These results provide a global view of barriers to human cellular reprogramming.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View