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Abstract

This paper develops asymptotic F tests robust to weak identification and temporal de-
pendence. The test statistics are modified versions of the S statistic of Stock and Wright
(2000) and the K statistic of Kleibergen (2005), both of which are based on the continuous
updating generalized method of moments. In the former case, the modification involves only
a multiplicative degree-of-freedom adjustment. In the latter case, the modification involves
an additional multiplicative adjustment that uses a J statistic for testing overidentification.
By adopting fixed-smoothing asymptotics, we show that both the modified S statistic and
the modified K statistic are asymptotically F-distributed. The asymptotic F theory accounts
for the estimation errors in the underlying heteroskedasticity and autocorrelation robust vari-
ance estimators, which the asymptotic chi-squared theory ignores. Monte Carlo simulations
show that the F approximations are much more accurate than the corresponding chi-squared
approximations in finite samples.
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1 Introduction

For models defined by moment restrictions, we often allow the moment process to have a non-
parametric autocorrelation structure, especially in macroeconomic and financial applications.
The generalized method of moments (GMM), initially proposed by Hansen (1982), is a work-
horse for these models. Inference in the GMM framework typically employs a nonparametric
estimator of the long-run variance (LRV) of the moment process. In the regression setting, which
is a special case of the GMM, this nonparametric LRV estimator is more commonly referred to
as the heteroskedasticity and autocorrelation robust (HAR) variance estimator. Conventional
asymptotic theory dictates that the HAR variance estimator is consistent. However, the accu-
racy of the resulting asymptotic approximation is often unsatisfactory. In particular, HAR tests
tend to over-reject, sometimes substantially, under the null hypothesis in finite samples. See, for
example, Andrews (1991), Hansen, Heaton, and Yaron (1996), and the other papers in the July
1996 special issue of the Journal of Business & FEconomic Statistics for evidence.

The recent literature has introduced alternative asymptotics to combat this problem. Unlike
the conventional asymptotics where the amount of nonparametric smoothing increases with the
sample size, the alternative asymptotics holds the amount of nonparametric smoothing fixed.
Hence, the alternative asymptotics is also called the fixed-smoothing asymptotics. There are
ample numerical evidence and theoretical results on the higher accuracy of fixed-smoothing as-
ymptotic approximations relative to conventional asymptotic approximations. See, for example,
Jansson (2004) and Sun, Phillips, and Jin (2008) for location models, and Sun (2014a, 2014b)
for the GMM framework.

Another source of the poor finite sample properties of HAR tests is related to the weak
identification of the model parameters, as Stock and Wright (2000) point out. Nonetheless, it is
possible to perform hypothesis testing and construct confidence intervals without assuming that
the parameters are identified. Stock and Wright (2000) propose using the S statistic constructed
directly from the GMM objective function, while Kleibergen (2005) proposes using the K statistic,
a Lagrangian-multiplier-type statistic constructed from the first-order derivative of the continuous
updating GMM (henceforth, CU-GMM) objective function.

Under some regularity conditions, both the K statistic and the S statistic are shown to follow
chi-squared distributions asymptotically under the null hypothesis, regardless of the strength of
the identification. However, these chi-squared approximations rely on the assumption that the
underlying LRV estimators are consistent in the presence of the heteroskedasticity and autocorre-
lation structure. In other words, the chi-squared approximations completely ignore the estimation
errors in the LRV estimators and effectively assume that these LRVs are known. For this reason,
the approximating chi-squared distributions can be far from the finite sample distributions.

The problem is especially severe for the K statistic, as all the underlying LRV estimators
employ the same smoothing parameter. To illustrate the point, consider the kernel approach
to LRV estimation with compactly supported kernels. In this case, the kernel estimators of the
LRVs of the moment process and Jacobian process take a weighted sum of the respective sample
autocovariances up to the same order (see Assumption 2 in Kleibergen (2005)). For these LRV
estimators to be consistent, the maximum order of autocovariances (i.e., the truncated lag) must
be sufficiently large such that none of the LRV estimators suffers from a large bias. However,
when the maximum order of autocovariances is large, all the LRV estimators have high variation.
Hence, to improve the accuracy of approximations, the potentially high estimation uncertainty
should not be ignored.

This paper develops fixed-smoothing asymptotics for the K and S statistics to account for



the estimation uncertainty in the underlying LRV estimators. It is built upon Sun (2014b)
and Hwang and Sun (2017), which establish fixed-smoothing asymptotics for the usual statistics
including the Lagrangian-multiplier (LM), Wald, and likelihood-ratio types of statistics in a
strongly identified GMM framework. The main departure is that we consider the CU-GMM
framework with possibly weak identification. As in Hwang and Sun (2017), we employ the
orthonormal series approach to LRV estimation. The simplest and most familiar example of this
estimator is the average periodogram estimator, which involves taking a simple average of the first
few periodograms. More generally, this approach involves first projecting the time series onto a
sequence of orthonormal basis functions such as the sine and cosine functions and then taking the
simple average of the squared projection coefficients as the LRV estimator. The number of basis
functions, which characterizes the amount of smoothing, is the smoothing parameter underlying
this orthonormal series LRV estimator.

By holding the number of basis functions fixed as the sample size increases, we establish a
novel result that a modified K statistic and a modified J statistic follow independent F distri-
butions in large samples. There are substantial challenges to establishing this intriguing result.
First, Kleibergen’s (2005) asymptotic chi-squared theory relies on the key result that the Jaco-
bian for the CU-GMM problem is asymptotically independent of the empirical moment vector.
Asymptotic independence may not hold when the estimation uncertainties in the LRV estimators
are accounted for. Second, the weighting matrix in the CU-GMM objective function converges to
a random matrix under fixed-smoothing asymptotics. This is in sharp contrast to Kleibergen’s
(2005) setting in which the weighting matrix converges to a deterministic matrix. As a result, the
weighting matrix is, by definition, asymptotically independent of all the involved random variables
including the Jacobian for the CU-GMM under conventional asymptotics. Such independence
does not hold under fixed-smoothing asymptotics. The absence of these two independence results
thus makes it challenging to show that the K statistic and J statistic are asymptotically pivotal.

To overcome these challenges, we employ singular value decompositions (SVDs) and condi-
tioning arguments. We also use the rotational invariance of the standard normal distribution
and Wishart distribution repeatedly. Along the way, we introduce some simple modifications to
the original K, J, and S statistics. For the J and S statistics, such modifications amount to a
multiplicative degree-of-freedom correction that is free of nuisance parameters. For the K statis-
tic, the modification involves both a degree-of-freedom correction and a correction that employs
the original J statistic. We show that the seemingly complicated asymptotic distributions are not
only pivotal but also equal to the standard F distributions.

The asymptotic F tests based on the modified K and S statistics are just as easy to use as the
chi-squared tests proposed by Kleibergen (2005) and Stock and Wright (2000). Like chi-squared
critical values, F critical values are readily available in standard programming environments
and software packages. Moreover, the asymptotic independence of the modified K statistic and
modified J statistic allows us to design a new and simple test to overcome the well-known power
deficiency of the usual K test. Monte Carlo simulations show that the F distributions provide
more accurate approximations of the distributions of the modified K, J, and S statistics than the
chi-squared distributions.

We use the following notation throughout the paper: E(a) is the expected value of the random
variable a and vec(A) stands for the column vectorization of the m x d dimensional matrix A :
vec(A) = (A},...,A)) when A = (Ay,...,Ag). Py = A(AA) " A and My = I, — Pa. “—P”
indicates convergence in probability and “=-" indicates convergence in distribution. We use “0”
or “O” to represent a matrix of zeros.



The rest of the paper is organized as follows. Section [2| presents the K and S statistics
and the modified K, J, and S statistics, and reviews the asymptotic chi-squared theory for the
K and S statistics. Section [3| develops the fixed-smoothing asymptotics for the K, J, and S
statistics. Section {]is devoted to establishing the asymptotic F theory for the modified K and J
statistics. While Sections focus on testing the whole vector of the model parameters, Section
considers testing a subvector. Section [f] develops the asymptotic F theory for the modified S
statistic. Section [7] uses the asymptotic properties of the K and J statistics to design a more
powerful test. Section [§| reports simulation evidence and presents an empirical application. The
last section concludes. All proofs are given in Appendix A.

2 Basic Setting and Asymptotic Chi-squared Theory

2.1 The K, J, and S statistics and their modifications

Let Y; € R be a vector of observations at time ¢, and f (Y;,+) an m x 1 vector of continuously
differentiable functions such that the following moment restriction

Ef (Y, 00) =0, fort=1,...,T, (1)

holds for fy € © € R?. The degree of potential overidentification is denoted by ¢ := m — d. We
allow the process f (Y, 00) to exhibit heteroskedasticity and autocorrelation of unknown forms.
We are interested in testing

H() 10 = 90 against Hl 10 75 90.

Since the null hypothesis pins down the full parameter vector, testing without assuming identi-
fication is feasibleﬂ For example, we can use the K test of Kleibergen (2005) and the S test of
Stock and Wright (2000), both of which are based on the CU-GMM objective function.

To introduce the CU-GMM objective function, we let Vi () be the long-run variance of the
moment process, that is,

T
Vi (0) = lim var (\}T dof <Yt,9>> :
t=1

A nonparametric estimator of the LRV takes the quadratic form

N 1 'z t s - - ’
U )= 3 wn (73 ) [705.0) = F00)] (7 00) - (0]

t=1 s=1

where f(Y,0) =T! Zthl f (Y, 0), wp (-, -) is a weighting function and h is the smoothing para-
meter indicating the amount of nonparametric smoothing. For example, we can take wy,(t/T,s/T) =
k((t—s)/(RT)) for a kernel function & (-), leading to the usual kernel LRV estimator. With the
LRV estimator Vﬁ (0), the CU-GMM objective function i

/
1
T2

Vo) [;T > (.0)

t=1

Qr (9)

L I
ﬁZf(Ytﬁ)
t=1

!We consider subvector testing in Section
2The multiplicative factor of 1/2 is introduced for notational convenience in our later development.



The K statistic is based on the first-order derivative of Q7 (). Define

gj (}/t,e): afé?79) ERle’]:17"'7d7
J
of (Y, 0 m
9%9):f(a;/)=<gl<n,e>,...,gd<m,e>>eﬂ% “,
_ af(Y;ﬁa ) mxd

Taking the first-order and second-order derivatives of Vﬁc (0) with respect to 6;, we obtain the
following LRV estimators’}

1 Iz t s _ ,
Vs O = 13- 5 n () by (5.0) - 5 (V001 [£ (00 - T (v.0)]

1 rr t s
Vaig; (0) = 7 > wn (T’ T) g5 (Y2,0) — g; (Y,0)] g5 (Y, 0) — g; (Y, 0)].

t=1 s=1
Then,
9Qr (0) - -
90 - DT (0) T g }/t’ ’
where
Dy (0) = [Dr, (9) -, D1.q (0)] € R™? wwith (2)
T
1
Drj (0 [ Zg] Y;,0) (9) [ Wi Zf Y, 0)| € R™*L,
=1
The K statistic for testing Hy : § = 0 against Hy : 0 # 6 is
9Qr (60)\' 1 -1 —1 /0Q (6o)
Kr (00) = (86 [DT (60)" Vg~ (60) Dr (90)} a0 )’

where, for a function ¢ (0), 0¢ (6) /06 is defined to be
¢ (00) 09 (0)

dx1
90 90 R

0=0o

The S statistic is proportional to the CU-GMM objective function and is given by

St (0o) =2Q7 (0o) .

To develop our fixed-smoothing asymptotics, we employ the orthonormal series LRV estimator

a(br) a2 () u(3).

3Strictly speaking, ngf (0) is a long-run covariance estimator, but we refer to it as LRV for convenience.




where G is the smoothing parameter for this estimator and @y (-) is a set of basis functions on
L?[0,1]. With this choice of the weighting function wy, (+,-), the LRV estimator Vi (6) become

T

G T !
Vﬁ<9>=é;{&;<m (7) [f(Yt,G)—f(Y,H)}}{\%;% () [f(n,m—f(m)]} .

In the econometrics literature, the orthonormal series LRV estimator has recently been used by,
for example, Phillips (2005), Miiller (2007), Sun (2011, 2013, 2014a,b,c), Liu and Sun (2019),
and Lazarus, Lewis, Stock, and Watson (2016, 2018).

Our asymptotic F theory will be developed for modified versions of the usual statistics. The
modification involves the following J statistic:

Jr (6o) = St (60) — K1 (60)

!/

[ & - 1«
= ﬁ;fm,eo) Vi ! (00) \/T;f(yt,@o)
- (29550) [or 60y vt 0o Dr o] (225 ®)
Define
f (i, 00) = {Im = Dy (6) | Dr (60) V" (60) Dr (60)|  Dr (60)' V5 <0o>} f (1, 0)

Then, some algebra shows that

for an estimator 6 of 0o.
The modified K, J, and S statistics are defined as

G—m+1 ]CT(HO)

Kp =K (00) = Gd 1+ Jr (60) /G’

. . G—q+1

Ti = T (60) = —qu Jr (60) ,
N . G—m+1

St = Sk (00) = 757’; St (6o).

We show that all three statistics are asymptotically F-distributed under the fixed-smoothing
asymptotics.

4The literature typically uses K in place of G. To avoid the possible confusion with the K statistic, we use G
to denote the number of basis functions in this paper.



2.2 Conventional asymptotic chi-squared theory

Before deriving the fixed-smoothing asymptotics, it is useful to review the conventional asymp-
totic chi-squared theory for the K and S statistics. To find the conventional asymptotic distrib-
utions of the original K statistic Kr (fp) and the S statistic St (fp), we maintain the following
two assumptions.

Assumption 2.1 The following CLT holds:

L S I (Ye,00) — Ef (Y, 00)] ’
VT 2t=1 .
( Tz 21 veelg (Y, 00) — By (Y, 60)] ) = ( >,

where ¢ € R™>1 Yy € R™4X1 " and

for

Assumption 2.2 Vﬁc (00) =P Vg (00), Vg (0o) is positive definite, and for j =1,...,d

~

ngf (6o) —P ngf (6o) -

Assumption is the same as Assumption 1 in Kleibergen (2005). Assumption is the
working assumption maintained throughout Kleibergen (2005).

We introduce a notational convention. When a (random) variable depends on the true para-
meter value, we often suppress this dependence. For example, we write

V(Qo) =V = < Vﬁ Vfg ) and DT (00) = DT.
Var Vag

For easy reference, we call Dr (6y) the CU Jacobian.
Now, under Assumptions [2.1] and we have

Dy (00) — VTEg;(Yy, 6p)

T
1 .
= —=>_[95(¥i,00) — By; (Y2, 00)] — Vi, 5 (60)
VT 5 J
-1 -
= ng - ngfvﬁ Yyi= ng’f‘
Note that ng‘ ¢ is independent of ¢ because they are normally distributed with zero covariance:
Cov(quj-fa 1/)f) = Cov(ng - Vg;fvﬂjlwfﬂ/)f) = Vj(]]f - Vt‘]]fvﬁjlvﬁ = 0.
This means that Dr (6p) is asymptotically independent of Zthl f (Y3, 00) /V/T. Tt then follows

that
K7 (6p) = x3 under the null Hy.



For the S statistic, Assumptions and imply that’]
St (6p) = X2, under the null Hy.

A component of 8Vﬁ (60) /00 is ng #(0p) . Assumption [2.2| requires not only that Vﬁr (6p) is a
consistent estimator of Vi (Ap) but also that each derivative 8Vﬁ (Bo) /00 is a consistent estimator
of the corresponding derivative OV (6p) /06;. Using the consistency results amounts to approx-
imating the distributions of the two sets of LRV estimators, namely Vﬁ (6p) and {VQJ. 7 (6o) ;-l:l,
by their respective degenerate distributions. This may not be much of a problem if such an
approximation is applied to only one LRV estimator and the underlying process has very weak
dependence. However, here we apply the degenerate approximations to potentially many LRV
estimators, each of which is governed by the same smoothing parameter used in the construction
of Vﬁc (Ao) . The single smoothing parameter must be tailored toward both the moment processes
and the Jacobian processes, some of which may be strongly autocorrelated. For this reason,
the smoothing parameter used in f/ﬁ (fp) must account for the autocovariances of high orders,
even though this is not necessary for estimating Vi (6p) itself. The estimation uncertainties in
Vﬁc (0p) and hence in {‘79]. #(0o) ‘}:1 can therefore be very high. Ignoring them may lead to a poor
approximation in finite samples.

3 Fixed-smoothing Asymptotics for the K, J, and S Statistics

The analysis in the previous section motivates us to study the fixed-smoothing asymptotics under
which G is held fixed as T' — oo. Under this type of asymptotics, the estimation uncertainties
in Vﬁc (fp) and {f/gj #(0o) ?:1 are all retained in the limit, and as a result, the fixed-smoothing
asymptotic approximations are more accurate than the chi-squared approximations. Since G is
fixed, this type of asymptotics may be referred to as the fixed-G asymptotics. We consider the
fixed-G asymptotics hereafter.

We first present an assumption on the model identification.
Assumption 3.1 For x € [0,1/2],
T Eg(Y;,00) — 11 = (IT;, ..., II;) € R™*4
for a constant matriz I, and I1 # 0 for k € [0,1/2).

When & = 0 and II has a full column rank, 6y can be consistently estimated at the usual v/T'
rate. When x € (0,1/2) and II has a full column rank, 6y can still be consistently estimated,
albeit at a rate slower than v/7. In later sections, we refer to the case with x € [0,1/2) as the
case with possibly weak identification. When x = 1/2 and II = 0, 6y cannot be consistently
estimated, and the model contains no information about 6y to the first order. We refer to this
case as the case with complete identification failure. The case with k = 1/2 and II # 0 is the
intermediate case in which 6y cannot be consistently estimated, but the model contains some
information about 6.

The next assumption generalizes Assumption

SWeaker assumptions can be used to obtain this result. For example, it suffices that Vi (o) —? Vi (6o) for a
positive definite matrix Vg (6o) and that T=2 37 f(¥;,00) = N (0, Vg (60)).



Assumption 3.2 The following functional CLT (FCLT) holds:

( LS [ (%, 60) — B (Y, 60) )
% Zirl] vec [g (Y2, 00) — Eg (Y2, 00)]

()= ) ()

1/2
_ ( vy o (1)/2 ) ( Wy (r) >
Vo Vg 2 v Wy (r)

By (r) = (B;1 (r),.. .,B;d (T))/ c RImx1

where

s a vector Brownian motion process and
_ ! ’ / dmx1
Wy (r) = (ng (T),...,ng (r)) eR
1s a standard vector Brownian motion process.

Assumption is stronger than necessary. It can be replaced by Assumption [2.I] and a
multivariate CLT that ensures and (6) below. See Sun (2014a,b) for details. Sufficient
moment and mixing conditions for the CLT or FCLT can be found, for example, in Theorem 7.18

of White (2001).
For each By, (r) e R™*, j =1,...,d, we write

By, (r) = Vg, Vg ' By (r) + By, (1), (4)

where By () and By;.; (r) are independent Brownian motions. Furthermore, let V,.p = V.4 —
ngfVﬁ?lVfgj, and define
. —1/2 ~1/2
Wy, (1) = Vyra 2By, (r), Wy (r) = Vg 2By (r), and Wy, ¢ (r) = V, /2By 4 (r).
Then, Wy, (r), Wy (r), and W,..; (r) are standard Brownian motions. Plugging them into
leads to ) ,
—1/2 —1/2 —1/2v,1/2
W, (1) = Vi o PV gV 2 Wi (1) + V0! VLt Wop (r).
For the basis functions used in the LRV estimation, we maintain the following assumption,
which is the same as Assumption 1(b) in Sun (2014b).

Assumption 3.3 For ¢ = 1,2,...,G, the basis functions @y (-) are piecewise monotonic, con-
tinuously differentiable, and orthonormal in L*[0,1] and satisfy fol by (z)dx = 0.

Under Assumptions [3.2] and we have

1 « t _ 1
JT ;CIM <T> [f (Y, 00) — f(Y, 90)] = /0 P, (r)dBy (r) := 3y (5)
4 1



jointly over j =1,2,...,dand £=1,...,G. Let {7, = fol @y (r) dBy,.5 (r). Then, we have

Egit = Vit Vip 0+ &gy pte

Let 14, Ng; 0> and UPy. be the scale-free versions of {; , §gj’£, and fg],,f,f. We have

1
Ny = /0 Oy (1) dWy (r) ~ idN (0, I,) over £ =1,...,G;
1
UM /0 Dy (1) dWy, (1) ~ i9dN(0, I;,) over £ =1,...,G;
1
Ngif b "= /0 Dy (r)dWy,.5 (r) ~ @dN(0, I;,) over £ =1,...,G.

The iid properties hold because {®,(:),£ =1,...,G} are orthonormal on L3[0,1] and W, (r),
Wy (r), and Wy, s (r) are standard Brownian motions. We collect some useful results in the
following lemma.

Lemma 3.1 Let Assumptions[3.9 and[3.3 hold.
{nﬂ,é =1,.. .,G} and Ngjpeid =1,.. d = 1,...,G} are independent.
(b)GV;,/f (1) is independent of {n;,,t=1,...,G} and Wy, (1) is independent of {ng, 100 =
1,...,GY).
() {Wy,.s(1),5=1,...,d} are independent of{nﬂ,ﬂ =1,... ,G} and Wy (1) is independent
Of{ngj-f,£3j: 1,...,d,0=1,...,G}.

Lemma (3.1[(a) holds because Wy (-) and Wy, s (-) are independent. Lemmas 3.1} . b) and (c)

follow from the condition that fo @ (1) dr = 0 and the independence between Wy (-) and W.r (-).
The following lemma establishes the asymptotic behavior of the LRV estimators and CU
Jacobian for different values of x.

Lemma 3.2 Let Assumptions[3.1), [3.3, and[3.3 hold. Then,

V szfvfgf,f’ 0 (00) = GngJ effe,
and o
i = Do
where
Doo = (Doo1s- - -y Doog) € R™ for Doy j =T1; + 1 {m = ;} By,.p (1)
and

By (1). (7)

- 1 & 1<
ng-f (1) = ng (1) - [G ngj,eﬁ’f,e] [G ng,eﬁ’f,z
(=1 =1

10



Note that ng.f (1) is not the same as By.r (1), which is equal to By, (1)—Vg].fVJ§13f (1). The
difference lies in the implicit projection coefficient. While By (1) is based on the true projection
coefficient V. fVﬁ ; By,.5 (1) is based on the limit of the estimated version Vg]. ff/ﬁ? !, Under the
fixed-smoothing asymptotics, the limit of ng fVﬁT 1is not equal to Vs fVﬁ? ! The difference has
profound implications on our asymptotic development for the case that x = 1/2. While By,.f (1)is
independent of By (1), Bg].. # (1) is not. The Jacobian for the CUE is therefore not asymptotically
independent of the moment process. This is in sharp contrast to Kleibergen (2005), where
asymptotic independence holds even for the case with k = 1/2. Section provides additional
details.

Using Lemma [3.2] we can establish the fixed-smoothing asymptotics of the K, J, and S
statistics.

First, for the K statistic, we have

K1 (6o)

T ! -1 T
Dy, Dy w1 Dr Dp v 1
{Tl/2 Vi Z Yt’90} |:T1/2—nvff Tir| Tipr's \/th:;f(yta@o)

=1

-1 G -1 G -1
= By (1 G Z N3 e] Dy § D é ;:1 ’ff,éf/f,z] D é ;:1 Er0€70| By (1)
=Ko -
Representing K, ¢ using scale-free random variables and processes, we have
G -1
Koo = [V 2B 0] | & v 260 (Vi )
/=1 ) . B
y Vﬁ?WDoo (Vﬁ:imDoo)’ ézvﬁjlﬂgﬂ (Vﬁ:i szf) Vﬁ?l/Z N (VﬂTI/QDoo)/
Z:_ll
= Zv_l/szﬁ ( ﬂjl 25“) Vﬂjlme (1)

=Wy (1) Ol Do {D(’)OC’golf)oo}i DLCW, (1)
= [Pozmp Cttwr )] ®

1/2

where DOO = Vﬁ D, and

Second, for the J statistic, we note that
T (e e oyl
Z (Y, 00) = V2 [Wf (1) = Do { DC Do} { DLeCt Wy m}] ,

11



and so
i (00) = 5 (1) - D { DGl Do (DO <1>}},C‘;@1
X [Wf (1) - Deo {D{,oé;olﬁoo}_l {Déoé;olwf (1)}]
= [, O W O = e

which holds jointly with KCr (0g) = Koo . Finally, given that Sy (0o) = Jr (6o) + K1 (00), we
have

S (60) = || C=2wy (] = Wy (1) G2 (1) 1= S

Although the fixed-smoothing asymptotic distributions of 7 (0y), Jr (0o), and St (6p) look
complicated, they provide the basis for developing the asymptotic F theory for K%, (6o) , J7 (6o),
and S7 (0o). In the next two sections, we focus on the modified K and J statistics and obtain their
asymptotic distributions under different assumptions on the strength of the identification. Since
the distribution of the modified S statistic does not depend on the identification assumptions, its
analysis is carried out separately in Section [6]

4 Asymptotic F Theory for the Modified K and J Statistics

4.1 The case with possibly weak identification

In this subsection, we consider the case x € [0,1/2). When x = 0, we have the usual case of strong
identification, and 6 is /T estimable. When x € (0,1/2), fg can still be consistently estimated,
but the rate of convergence is slower than the usual parametric v/7T rate. See, for example, Caner
(2010).

By Lemma when k € [0,1/2), the limit Dy of the normalized CU Jacobian, namely
DT/Tl/ 2=k is a deterministic matrix. By definition, Dy is independent of any random vari-
able including By (1), the limit of the empirical moment vector. Therefore, the normalized CU
Jacobian is asymptotically independent of the empirical moment vector. This brings our case
with x € [0,1/2) close to what is considered in Kleibergen (2005). Nevertheless, there is a major
difference. Under the usual asymptotics that Kleibergen (2005) employs, the LRV estimator Vﬁ
converges in probability to the true LRV Vj, and so the randomness of the weighting matrix in
the CU-GMM objective function Q7 (6p) vanishes. By contrast, under the fixed-smoothing as-
ymptotics, the randomness is retained in the limit with the consequential effect on the asymptotic
distribution of the K statistic. The GMM with a random weighting matrix in the limit has been
studied by Sun (2014b) and Hwang and Sun (2017), who consider a two-step GMM framework
with strong identification. Despite this difference, we can adopt the idea in Sun (2014b) and
Hwang and Sun (2017) to prove the following theorem.

Theorem 4.1 Let Assumptions hold. If k € [0,1/2) and II has a full column rank, then
[CF (60) , T7: (60)] = [Ki0 T 0] =" [Fag—mt1s Fa.G—gr1]

where Fy g_m+1 and Fyg_q+1 are independent F' variates.
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Partitioning the matrix Cs, and the vector Wy (1), we write
I Cua, C Wa(1)
Crom g Somae= (G0 G ) anawy = (D), )
G; L Cyd, Coq ! Wiq (1)

where Cyq € R4, Cpy € R, Cyy € R4, Cpq € R4, Wy g (1) € R, and Wy g (1) € RI¥L
To obtain the asymptotic F' distribution for %, (o) in Theorem we first use the SVD of D
and the partitioned matrix inversion formula to show that

~ o~ . ~ o~
Koo =" [Wpa (1) = CaaCo Wry (0] Gty [Wra (1) = CanCig Wi (1)]

where C’dd.q = C’dd — C’dqé’(;lléqd. That is, Ko ¢ is equal in distribution to a quadratic form in the
vector Wy 4 (1) — C’dqé’qu W; 4 (1) with Cgq., as the (inverse) weighting matrix. While Hotelling’s
T? distribution also takes a quadratic form, the underlying vector is standard normal and the
weighting matrix follows an independent Wishart distribution. This inspires us to transform the
original K statistic K7 (fg) so that the resulting limiting distribution takes the form of a 72
distribution. This transformation involves the J statistic J7 (fp) and amounts to dividing the
original K statistic by 1+ G~ 77 (6p) . With additional multiplicative rescaling, we then turn
the T2 distribution into the standard F distribution. This explains how the modified K statistic
IC%. (6p) is constructed.

Theorem shows that the modified K and J statistics converge weakly to independent F
distributions. This intriguing result is used later to design a new test that overcomes a drawback
of the LM-type or score-type tests such as the K test.

4.2 The case with complete identification failure

We consider k = 1/2, in which case, by Lemma
Dr;(00) = Dooj =11 + ng.f (1) = Do j € R™¥L,

We further assume that I = 0 so that vTEg(Y;,6y) — 0 as T — oo. That is, Bg(Y;,00)
converges to a zero matrix at a rate faster than 1/v/7. When x = 1/2 and II = 0, the model
parameter 6 is not identified, and we have complete identification failure. An extreme case is
Eg(Y;,0p) = 0, in which case the moment conditions provide no information about 6y and none
of the linear combinations of #y is identified. An example of this case is an instrumental variable
(IV) regression where the instruments are completely irrelevant.

In the case of complete identification failure, D7 (6p) converges to a random matrix Ds,. The
columns of the random matrix D, are {ng. 7 (1)}, which are not independent of {Ct, Wy (1)}.
This scenario is completely different from that of Kleibergen (2005), where the CU Jacobian
is asymptotically independent of the empirical moment vector. We also cannot use the same
arguments as in the proofs of Theorem directly. Nevertheless, we can establish the same
result as in Theorem (4.1l

Theorem 4.2 Let Assumptions hold. If k =1/2 and 11 = 0, then
(K5 (80) , T7 (00)] = [Kie 6, T 6] =" [Fa,G—m+1, Fo.c—q+1]

where Fy g—m+1 and Fyq_q+1 are independent F' variates.
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To prove the first part of the theorem, we first represent Dy j = ng. #(1) in terms of the
scale-free random variables and processes:

By, (1) =V, /3 W, 1 (1),

where

G G -1
1 1
W, (1) = W,.p (1) = [G > :”gffﬂ?},e] [G > :Wf,e"},fz] Wi (1). (10)
/=1 /=1

Owing to the presence of the second term in , which captures the projection uncertainty,
Wy,.r (1) is not independent of {CL', Wy (1)}. The question is whether a transformation of

Wy,.r (1) is independent of {CL, Wy (1)}. In view of the conditional normality of ng. £ (1) con-
ditional on {n feit=1...,G } and Wy (1), it is natural to employ rescaling by its conditional
standard deviation as the transformation. We show in the proof of Theorem that the condi-
tional variance of ng.f (1) is [1+ G Wy (1) C'Wy (1)]1, a scalar matrix. This motivates us
to define

D* L e— DOOJ
m’] T ~
VI Gy (1) Gy (1)

: (11)

The key step in proving Theorem is to show that {]3;07 j} are independent of CN'O_Ol and Wy (1).

Then, by conditioning on {D;O j}, we effectively reduce the problem to the previous case in which
the limit of the CU Jacobian is a deterministic matrix.

Note that Sz (fp) = Wy (1)’ Co! Wy (1). In terms of the K and J statistics, the rescaling
defined in amounts to replacing Dy (69) by Dr (o) /\/1 + G~1Sr (6p) in the definitions of
K1 (0p) and Jr (0p) . Such a replacement has no effect on these two statistics, as the relevant terms
take a self-normalized form. We employ the rescaling in only in our theoretical development.
There is no need to change the original or modified statistic.

It is reassuring that [IC} (6o), T} (00)] = [Fa,G—m+1, Fg,c—q+1], regardless of whether 6y is
weakly identified or unidentified. We can use the F approximations without knowing the strength
of the identification.

4.3 The intermediate case

We consider the case with x = 1/2 but now
Drj (00) = Dooj =TI + By,.p (1)

for some II # 0. That is, v/TEg; (Y, 0) # 0 for some j. In this case, 6y is not identified, as the
noise and signal are of the same order. However, there is still some information about 6y. The
case is analogous to the simple IV regression where the covariance between the instrument and
endogenous variable is small in that it goes to zero at the exact rate of 1/ VT.
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We proceed as in Section [4.2] to define

DL = Doy
m?j - ~
1+ 6wy (1) Gty (1)
_ II; _ W,.r(1
_ Vﬁ 1/2 j _ v Vﬁ 1/2Vglj/.]2f gj f( )~
1+ G Wy (1) Ct (1) 1+ G Wy (1) Ct (1)

_ L2 1, —1/21,1/2 5«

= Vy - Vg Ve Wers (1)

1+ Gy (1) Ewy (1)

Compared with IND:O ; in Section D(";O ; now contains an additional term, namely the first term
in the above expression. The presence of this first term invalidates our arguments in Section [4.2
because Wy (1)’ C5! Wy (1) and hence the first term are not independent of {C.', Wy (1)}. More
fundamentally, it is the mixture of the two distributions in D, ; that creates a dilemma. If only
II; is present for all j, we can use the arguments in Section to establish the asymptotic F
theory. If only By, s (1) is present for all j, then we can use the arguments in Section to
establish the same theory. However, the arguments in Sections and are different and
cannot be included in a unified framework.

In general, when V,.; # 0, the limiting distribution K, ¢ is not free of nuisance parameters.
Appendix B provides detailed arguments. However, under the increasing-smoothing asymptotics
wherein G — oo but G/T' — 0 as T'— oo, we have

K1 (6o)
d

Ky = (1+0p (1)) = x3/d,
using the same arguments in proving the chi-squared approximation in Section In the mean-
while, we have

FiG-m+1 = X3/d,

as G — oo. Therefore, the F approximation Fyg_p,+1 is asymptotically valid for the modified
K statistic K7, under the increasing-smoothing asymptotics. Similarly, the F approximation
F, g—¢+1 is asymptotically valid for the modified J statistic J7.

Although we cannot establish the asymptotic F theory for the intermediate case, we recom-
mend using it in practice. Our simulation results show that the F approximations are still more
accurate than the chi-squared approximations in finite samples. This is expected, as the F ap-
proximations still capture much of the uncertainty in the underlying LRV estimators, while the
chi-squared approximations completely ignore it.

5 Testing Hypotheses on Subsets of the Parameters

In the previous sections, the null hypothesis pins down all the elements of 6y. However, in many
empirical applications, we may be interested in testing only a subset of the parameters. Suppose
now that # can be partitioned as 6 = (o/, 8’)’, where o € R%, 3 € R% and d, +dg = d. Assume
further that « is locally strongly identified (see Assumption , whereas 5 may not be. We
would like to test the null of

Hgiﬁzﬁo
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while leaving « unspecified. Under the null hypothesis above, we estimate a by
& (By) = argmin Qr (o, By) ,
acA

where A is a compact parameter space. For notational simplicity, we write & = & (3,) with the
understanding that & is the restricted CU-GMM estimator under the null Hj. Let ag be the
probability limit of éo. Denote 6y = (af, 8p) and 8y = (&, 8)'.

The K statistic for testing Hy is

ICT@O) = (W) {DT(éo),Vﬁ?l(éo)DT(éo)]il (6623500)) :

and the S statistic is Sp(6o) = 2Q7(0p). The construction of the statistics Kp(fg) and Sy (fy) is
the same as in the case for testing the full parameter vector. The only difference is that all the
statistics are now evaluated at .

The modified K statistic involves the J statistic:

T
Jr(0o) = Sr(Bo) — Kr(fo) = [\/1? > F(V2,00)
=1

which takes the same form as before but is now evaluated at éo. With jT(@o), we define the
modified K, J, and S statistics as

_G—dg—q—i-l /CT(ég)

K (60) = S—
7(00) Gd; L G177 (B0)
A G—-q+1_ -

Ji(00) = qu Tr(Bo),

AN G—-dg—q+1 N

To obtain an explicit expression for the modified K statistic, we partition each of Dy (6) and
g(Y%,0) into two blocks:

Dy (0) = [D7,4 (0), Dy (0)] with Dr, (0) € R™ % and Dy g (0) € R™*4%
9(Y1,0) = [9a(Y2,0), g5(Y7,0)] with go(Y7,0) € R™ % and gg(V;,0) € R™*%.

Then,

04, xd
- ( Dr.s(60)' Vi (B0) | g7 iy f(Yt,éO)} )
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by the first-order conditions for estimating &.

Since the first block of wgiéeo) is zero, to compute the K statistic, we need only to find the

lower-right block of the matrix [Dp(fo)’ Vﬁ? Y(00)Dr(00)]7t. By the partitioned matrix inverse
formula, this lower-right block is

. . . 1. —1
Dr T 000D~ DV ) D (D Go) D) DV 000D

where DTﬁ = DT,B(éO) and lA)T,CY = DT7Q(@0). Hence, the K statistic becomes
/

T
Kr (Do) = [DT,g@o)’Vﬁl(éo)\}T S 1% 00)
t=1

o o o 1 . -1
x [Dér,ng;(eo)DT,ﬁ — D 3V (00) Dra (Dt oV (B0) Do) D'T,av];wo)DT,ﬁ]

0N =100 1 < 0
x [DT,B(G()) Vy <eo>ﬁt;f<n,eo>

To establish the fixed-smoothing asymptotic distributions of Kr(6o) and Jr(fo) and hence
those of KC%.(6p) and J;:(0p), we make the following assumptions.

Assumption 5.1 (a) The m x d,, Jacobian matriz
Ega(na 90) = Ha = (Hh ceey Hda)

has full column rank do, and Eg,(Y;,0) is a continuous function of 0 at 6y. (b) The m x dg
Jacobian matriz Bgg (Y, o) satisfies: for k € [0,1/2],

THEgg(Y;g, 90) — Hﬁ = (Hda+17 e ,Hd) s
and g has full column rank for r € [0,1/2).

Assumption 5.2 f (Y}, ) is twice continuously differentiable and
(a) (i) uniformly over s € [0, 1],

(T's]

1 N

T E goc(Y;fveo) :Ha'8+0p(l)ﬂ
t=1

(#1) uniformly over s € [0, 1],

[T's]

1~ 99;(Yz: 00)
72 e = Mgastop(1),
t=1
for j=1,...,do where I} o is an m X do constant matriz for each j =1,...,dq.

(b)) VT (& — ) = O, (1) and

/
DT,a 1 DT,a

\/T(d_QO):_ JT 7 JT

}+Op(1)a

2y = £(V4,00)
{ﬁ NG ; !
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where Dt = Dt o (00) and ‘A/ﬁTl = ‘A/ﬁﬂ(%).
() (i) T*B [g5(Y:, 00) = 95(¥3, 00)]| = 0, (1) and (ii)

T
=" [95(vib0) — Ega(vi,50)] = Z 93(Ye.60) — Bgs(Yi.00)] + 0, (1).

t=1 =1

Assumption (a) is used to prove Lemma [5.1[a) below. This is a standard assumption in
the literature on fixed-smoothing asymptotics.

Under fixed-smoothing asymptotics, the weighting matrix in the GMM criterion does not
converge to a deterministic matrix. For this reason, Assumption (b) does not follow directly
from standard textbook arguments. Nevertheless, sufficient primitive conditions can be found
in Zhang (2016), who considers the fixed-smoothing asymptotics under strong identification for
generalized empirical likelihood estimators, which include the CU-GMM as a special case.

Assumption|5.2|(c.i) holds by the dominated convergence theorem if Esup,c 4 [|7%95(Y:, o, Bo)|| <
00. Assumption (c.ii) is a stochastic equicontinuity condition, which holds under some moment
and mixing conditions.

Lemma 5.1 Let Assumptions and[5.3 hold.
(a) For any 0y between 0y and 0y, we have

- i@g (;) g0 (Yilo) = 0, (1)

Y

Oé,

(b) The following convergence results hold jointly

T
ITZ‘I)z (;) [f (Yt,éo) Y90 => Py (r)dBy (1) ==&y p (12)

Z < )[gj (Yio00) = 5(v.00)] = [ @) By, (1) = ¢, (13)

forg=1,....dandf=1,...,G.
(¢) For Coo = G71 Zle £ .87 4, we have

Vﬁ_'l/2 \/*Zf 1/;5790
=M ! ET:( 2y, 0 )) (1+0,(1)) =M LCM2By (1)
= VﬂTI/QDT,a T ts U0 Op 0;1/21'1(1 ) f .

(d) Let

CoP My vy, - OBy (1),

3 1 & ,
By .;(1) = By; (1) - [G Zé@-ff,@
P
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1 -, ,
Doopj = a5+ 1 {" = 2} Bgpiyr 157 =1.-. dg,

and
Doop = (Dos,g1s- -+ Doopay) € R™¥d5,

Then, R
Drs(0)/TY* " = Dy 5.

Lemma [5.1)(a) follows from Assumptions and [5.2f(a). It is used to prove Lemma [5.1|b).
Lemma b) shows that the asymptotic distributions are invariant to the estimation error in 6.

As a result, the limiting distributions of Vﬁ(@o), ng g;(6o), and Vfgj(@o) are the same as those of
f/'ﬁ (0o), f/'gj g;(00), and Vfgj (0p). The key assumption behind this invariance to the estimation error
in 0 is fol ®y (r)dr = 0. Lemma (c) shows that the estimation error in fy has an asymptotic
effect on the normalized moment conditions. The effect is captured via the projection matrix
va;uzD . The limit of DT,B(éo)/Tlm_H in Lemma (d) is similar to that in Lemma
The difference is that compared with BJ (1) defined in @, B;j, 7 (1) contains the additional
projection matrix M ooV, which captures the effect from estimating ap.

In the next two subsections, we establish the fixed-smoothing asymptotic distributions for the

modified K and J statistics. We defer the treatment of the modified S statistic to Section [6l

T,

5.1 The case with possibly weak identification

In this subsection, we consider x € [0,1/2). In this case, DT,Ig(@O)/Tl/Q_” converges to a deter-
ministic matrix Dy, g = IIz. Hence,

h DT76<éO>, 3 —1 7 1 7
Kr(6o) = i Vi (90)7Zf(1/t,90)
t=1
- A . -1
Db, . . D DL, . D . -1DL,. . D
B -1 T3 T3 1T« ’ -1 T,o¢r—1 T.5
x Tl/Z—HVﬁ T1/2—K Tl/Z—nvﬁc VT <DTaVﬁ DT@) \/Tvﬁ T1/2—K
- R ’ !
Drs (o) L
9, /\71 A ~
|\ iV (QO)T;JC(YZ,HO)
F !/
= [H'Bc;lﬂmc;l/znacg/?zaf (1)}
_ -1
X [H’Bc;lnﬁ — TCo M, [T1,C5 T, IH;CQHﬁ}
x [ch;l/QMC;UQHaC;;ﬂBf(1)} = Koo p.
In terms of the scale-free variables and processes, we have
~ ~ ~ !/
Koo = [H,IBCo_ol/ "Mg1eg Co/* Wy (1)}
- - | . -
X [MGC M ryngy CMMa| X (TGO M1y CPWy (1) (14)
2
_ ~—1/2
= PM@gol/Qﬁu [C’;l/zﬁg]Méc;l/Qﬁacoo We (1)
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where ) 3
Mg = Vi /5 and 1, = V; /*I,.

Owing to the presence of the projection matrix Mé—1/2ﬁ , the strategy for simplifying the
limiting distribution Ky, ¢ in the whole vector case does not work here straightforwardly. Instead,
we show in the proof of the next theorem that Ky, g can be represented by

Koo,
_a {Rﬁ (o) e, (1>}' [RB (o) R};] - {RB (o) e, (1>} |

where IT = (TI,,T15) and
Rg = ( Odgxda> Tazxds )-
This representation is identical to the fixed-smoothing limit of the Wald statistic in Hwang and

Sun (2017), who consider testing Rgf = (3, in a two-step efficient GMM framework. Using the
distributional representation in Hwang and Sun (2017), we find that

5 ~ / - -
Kooﬁ —d [Wf,d[; (1) — Cd&ch_qlWﬁq (1)} Cd;ldﬁ,q [Wf,dﬁ (1) — Cdﬁ,ch_(;Wﬁq (1)] . (15)

Therefore, the distribution of K, g takes the same quadratic form as the distributional represen-
tation of Ko g given in . The only difference lies in the dimensionality: while the vector in
the quadratic form for K, ¢ is of dimension d, that for K, g is of dimension dg.

In view of the similarity between K g and K g, it is not surprising that the asymptotic
distribution of K%(éo) is also an F distribution. The theorem below presents this result together
with the asymptotic distribution of ij(éo).

Theorem 5.1 Let Assumptions and hold. If k € [0,1/2) and II has a full

column rank, then
[K(00), T (00)| = [Fuy -ty Fug—as1]

where Fa, G—dy—q+1 and Fyg—q+1 are independent F variates.

Theorem is similar to Theorem When « is the null or empty vector, we have dg =
dg = d, Fa;G—ds—q+1 = Fa,G—m+1. Hence, in this special case, Theorem reduces to Theorem

4.1l

5.2 The case with complete identification failure

We consider the case with x = 1/2 and assume that IIg = 0. Replacing ﬁg by Doo”g in , we
now have

where

boo,ﬁ = (Doo,ﬁ,la . 7Doo,6,d@) c Rdeﬁ

20



for Doo,/i,j = Vﬁflﬂé*

Gdgyif

(1). Noting that

= ng (1) — éo_ol/QMéo_ol/Qﬁa . éo_ol/QWf (1)

1 G
G2 Sare
/=1

1/2
Wy (1) + Vg/fWgJ-f (1)

—1/2
= ngfvﬁ /

G
1 ~1/2 1/2 5 _
-5 Z [ngfvﬁ / Neelpe+ ng(fng]..f,m},g} Cool/QMé;”Zﬁa .0001/2Wf (1)
(=1
= VoV P |1 = CoCM M1z - CZM?| W (1)

1/2
+ ng'f

G
1 ~N— ~—
ng.f (1) — (G E ngj.f7g771f¢> 0001/2MC~,;01/21:[Q . COOI/QWf (1)]
(=1

— —1/2p7,(1) 1/2177(2)
=VorVg Wy 1)+ ng-fng-f OF

where
W (1) = [I = CoaC Mgy - O Wy (1)
N1
=1, (M0 TLCX Wy (1)

and

- @) 1 & X—1/2 —1/2

Wy (1 =Wo,r () = | & 2o tapepeilpe | O Mg - C2Wy (1),

=1

we have

at —1/2 —1/2 1 —1/2+,1/2 2
Decpj =V Vo ostVg WV )+ v V2 w1,

Gda+5f " Gdats

Since Dooﬁ’j has two components, this case is more complicated than what is considered in
Section where the counterpart Dy ; has only one component. It is more difficult to show that
a rescaled version of Dy g ; is independent of Wy (1) and C!.

The presence of the term containing W}l) (1) warrants the use of the SVD of IT,. Denote the

SVD by Uy,AoS., where
A
Aa = < Oa ) ; an = (UalanQ)
o

with 4, € Riexda O, e Rim—do)xda 7 e RM*da ] o ¢ R™*(m=da) gnd G, € Réexdo  Ag
in any SVD, A, is a diagonal matrix, O, is a matrix of zeros, and U, and S, are orthogonal
matrices. We also need to partition Coo, Wy (1), and 7, differently to deal with the effect from
estimating ag. We now write

~ ~ ~—1 A1 A Al
Cia, Cggq Vg CiaCoaa> qu.a

and



where Coq € RlXda Cpz € R Wy, (1) € R Wy o (1) € Ry € R gy € R
for g =q+dg=m—d,.

The lemma below provides the distributional representations of the quantities appearing in
[)00”3 and Kq g.

Lemma 5.2 The following distributional representations hold jointly:
- -~
(a) WfY (1) =% Ut [Wyra (1) = CagCig Wi (1)]

(0) CxMg1o, CP Wy (1) =4 UaaCio Wi (1)
(©) W, (1) =1 Ua [Wyys (1) = (& Sty .y.0) i Wra (1]
(d) C ‘1/2 ooy, Cl? =1 UnaC UL,

With some abuse of the notation, we identify the random variables in Lemma 5.2 with their
distributional representations in the rest of the paper.
Let Joo = Wy g (1) nglwf’q (1) . Using Lemma we can show that conditioning on Wy 4 (1)

and {n;z,0=1.2,...,G}, UC’XIW;I) (1) and U&ngf (1) are normal with the conditional vari-
ances (1+G 1 Jx0) 1y, and (14+G~1J) Iy, respectively. It is unsurprising that both U&lVV}l) (1)
and UgWg(j)f (1) have scalar conditional variance matrices. What is surprising is that the under-

lying scalars are the same. This inspires us to rescale [)00”3,]- by the square root of 1 + G 1T,
leading to the following definition:

Do g,

V1+G 17,

= ij‘ / nga+j'fvﬁ

Diopi=

1 2)
1/2 W]E : (1) n yvo/2y1/2 nga+j'f (1)
Viraig. T e g,

Let

DYy = (D;Oﬂ’l, . ,D;;oyﬁﬁdﬁ) .

Using Lemma we have
d)(F ! 51 /
Koo, = {( éo,ﬁ> Ua2Cy Wf,q(l)}

x {(gﬁ)’UaQCg;U;zD;ﬂ}_l x {(D;oﬁ)'Uagéq—ng(1)}.

By establishing that {D;oﬁ j} are independent of C’qq and Wy (1), we can prove the theorem
below.

Theorem 5.2 Let Assumptions and hold. If K =1/2, Ilg = 0, then

[/C*T(éo),jqf(éo)] = [Fas.6-ds—q+1, Fo.a—q41]

where Fy g dg—q+1 and Fyq_q+1 are independent F' variates.
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We have thus far considered cases parallel to those in Sections and Up to the adjust-
ment of the degrees of freedom, the asymptotic distributions of the modified K and J statistics
are the same as before.

For the intermediate case in which £ = 1/2 and Tl # 0, pivotal inference based on [K(8o), J2(6o)]
is not possible under the fixed-smoothing asymptotics, as asymptotically pivotal inference is not
possible even in the simpler case of testing the whole vector 6. Nevertheless, we can argue as
before that we can still use the F approximations for IC}(@O) and J7. (fo) given in Theorems
and as they are asymptotically valid under the increasing-smoothing asymptotics wherein
G— 00, G/T—0,as T — .

6 Asymptotic F Theory for the Modified S Statistic

To establish the asymptotic F theory for the modified S statistic, we maintain the following
assumption, which is part of Assumption

Assumption 6.1 T~1/2 qu} [f (Y2,00)] = By (r).

Theorem 6.1 Let Assumptions and [6.1] hold. We have

G—-m+1

S;: (90) = Gm

St (00) = Fin,g—m+1-
In addition, let Assumptions (a) and (a.i) hold and assume that ngf (00) = 0,(VT) for
j=1,...,do. We have

G—dg—q+1 A

Si(0o) = Gl T ) S1(00) = Fayiq.6—ds—q+1-

The assumption that ngf (00) = 0,(V/T) for j =1,...,d, holds if the FCLT for the Jacobian

process holds as in Assumption Here, we do not need the asymptotic distribution of ng £ (o)
and only impose a mild rate condition on it.

The assumptions for the asymptotic F' theory for the modified S statistic are much weaker
than those for the K and J statistics. The reason is that the S statistic does not involve the
Jacobian with respect to the parameter subvector fully specified under the null. The drawback of
the F test based on the modified S statistic is that the first degree of freedom in the approximating
F distribution is larger than that for the modified K statistic, leading to potential power loss.

The asymptotic F theory for the modified S statistic holds regardless of the strength of the
identification of the parameters pinned down by the null hypothesis. This contrasts with the
K and J statistics, where the asymptotic F theory cannot be theoretically established in the
intermediate identification case.

7 J-K* Test: Improving the Power of the Modified K Test

The K test can suffer severe power loss for some parameter values under the alternatives. In this
section, we design a new test to improve the power of the K test when it is low.
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We first consider testing the full parameter vector. Recall that the K statistic is based on the
first-order derivative of the CU-GMM objective function. Suppose that the first-order derivative
is zero at some 0% # 6y, where 6y is the true parameter value of 0, that is,

0 0 . *
) by, [ Zf Y. 0°)

Furthermore, suppose that 8 is not a minimizer of the CU-GMM objective function Q7 (#) . Such
a point exists because in general Q7 () is not a strictly convex function for any sample. For
such a choice of 6%, the K statistic K (8*) is zero by construction. As a result, we fail to reject
the null hypothesis of # = 6%, and we commit a type II error. No such #* works for all samples.
However, there may exist a parameter 8* # 0y such that KCrp (%) is small with a high probability
and Qr (0*) is substantially different from the minimal value of Q7 (6), namely mingeo Q7 (6) .
The K test then has low power against 6.

To fix the problem, we can employ a test to screen out such 6*. A defining feature of 6* is
that 2Q7 (0*) — 2mingeg Q7 (0) is large. Note that mingeg Q7 (6) does not depend on 6* and
2Q7 (07) = K (0%) + Jr (6%) . Hence, for a given value of Kp (6%), if Jp () is sufficiently large,
then we should reject the null Hy : § = 0*. If Jr (6%) is not large, then we proceed to use the K
statistic KCr (6%) to decide on whether Hy is true. This is the J-K test of Kleibergen (2005).

We can also modify the J-K test to obtain a J-K* test based on the Ji and K7 statistics.
The J-K* test rejects the null of Hy : 0 = 6 if

Ir (00) 2 oG g1

or
ji’i (90) < F;[é g+1 and IC;’ (00) > F;g m+1’

where F —gt1 is the 1 — oy quantile of the I distribution F, g_,41 and Fd
quantile of the F distribution Fyg_p,41-

In the cases with possibly weak identification and complete identification failure, 77 (6g) and
IC%. (6p) are asymptotically independent. Hence, the asymptotic null rejection probability of the
J-K* test is

G—m+1 is 1 —ag

Otj+(1—aJ)OzK:aJ+OzK—aJOzK.
To obtain a level-aw J-K* test, we can take

a— Qg

o =
1—ay

for a given ay. For example, if we set o = 5% and a; = 1%, then we take

0.05 —0.01
T 4.04%.
We use these choices of a; and ak in our simulation study.

For the intermediate case when x = 1/2 and II # 0, the above asymptotic level calculation
cannot be rigorously justified under the fixed-smoothing asymptotics, but it is still asymptotically
valid under the increasing-smoothing asymptotics.

To test a subvector of the model parameters Hy : = (,, we can design the J-K* test in the
same way but with 6y replaced by fo. The subvector J-K* test rejects if

jT(eO) F;é q+1
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or
T (00) < Fys_gr and Ki(00) > Fif g gy

The asymptotic validity of the test can be justified in the same way.

8 Monte Carlo Simulations and Empirical Application

In this section, we investigate the finite sample performances of the proposed tests in a linear
IV regression model and a stochastic discount factor (SDF) model. While the SDF model is
calibrated to an empirical dataset, the IV regression model is not. The reason for studying the
IV regression model is that we have the flexibility to vary the key parameters, and so we can
examine their effects on the test performances.

8.1 Linear IV regression

For the linear IV regression, the data-generating process is
Yi = X1401 + XouBy + €yt

where X and Xy, are correlated with €,;. The instruments are {Z;, Z24, Z3,}, which are
uncorrelated with €, , and

Xl,t = Zl,tﬁzz =+ Z3,tﬁxz + Exy,t
XQ,t = ZQ,thz + ZS,thz + Eaxo,t-

The error terms [ey ¢, €4, 45 Exo,t) follow an AR(1) process:
eyt = OLyu—1+ (1 - ¢§)1/26y,t

Exit = qbsgxl,t*l + (1 - ¢g)1/26$1,t

2\1/2
Exgt = ¢68$2:t*1 + (1 - ¢5) / Caat

with [ey ¢, €z, .t, €2yt] ~ N(0, V). The variance-covariance matrix V is

D

L op
Ve=| p 1
p p
The instruments also follow an AR(1) process:

Ziy =6, Zj41+ (1 —¢2) e,

for j = 1,2,3 with [e,, 4, €z, €24 ~ N(0,Ve). Finally, [ey+,€q ¢,€q,,] is independent of
[621,t7 €2a,t5 ez:g,t] .

In the simulations, we set ¢, = ¢. = ¢. We target a specified value of the R? of the first-stage
regression (a regression of X; on Z;; and Z3;). Using some simple calculations, the population
R? of the first-stage regression is

2 _ 2652(1+p)
28, (1+p)+1
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From this, we back out 32, as
R2
2 _

221+ p)(1 - R%)

With this choice, the correlation coefficient between X;; and ¢, ¢ is

corr (X, €40) = p (1 — RQ) for i =1 and 2.

There are three key parameters in the model: ¢, p, and R?. While ¢ measures the degree of
persistence, p measures the degree of endogeneity and R? measures the strength of the instru-
ments. We consider the following parameter configurations: ¢ = 0,0.6,0.9, p = 0.3, and 0.9, and
R? ranges from 0 to 0.2 in increments of 0.025.

The null and alternative hypotheses of interest are Hy : §; = 85 = 0 and Hy : 87 # 0 or
B9 # 0. We consider two groups of tests. The first group consists of the two-step Wald test, the
two-step LM test, the CU Wald test, and their modified Versionsﬂ The two-step tests in the first
group employ the standard IV estimator as the initial first-step estimator. The CU Wald test
is based on the Wald statistic evaluated at the CU estimator. See Sun (2014b) and Hwang and
Sun (2017) for more details on the two-step tests. The first group of tests is not robust to weak
identification. The second group of tests consists of the K, J, S, and J-K tests and their modified
versions developed in this studyﬂ For the OS LRV estimators, we use the Fourier basis functions
and select the number of basis functions G using the AMSE criterion in Phillips (2005).

Figure [1) reports the empirical sizes of the nominal 5% tests when ¢ = 0 and p = 0.9. The
average G is around 18 for every level of R?. Several patterns emerge. First, the chi-squared
tests including the Wald, LM, Wald CUE, K, J, S, and J-K tests all have a large size distortion.
For the Wald, LM, and Wald CUE tests, the size distortion can be severe. Second, when the
instruments are weak (i.e., when R? is small), the Wald, LM, and Wald CUE tests have larger size
distortion than the K, J, S, and J-K tests, as shown by the scale difference between the top and
bottom panels of Figure[l} In addition, the size of the Wald, LM, and Wald CUE tests improves
with the strength of the identification, while the size of the K, J, S, and J-K tests does not. These
results are consistent with the theoretical prediction: while the K, J, S, and J-K tests are robust
to weak identification, the Wald, LM, and Wald CUE tests are not. Third, a chi-squared test
has larger size distortion than the corresponding F test presented in this paper or that in Hwang
and Sun (2017). In fact, the K*, J* S* and J-K* tests, all of which are F-type tests, have an
accurate size. For the F tests based on the modified Wald, LM, and Wald CUE statistics, the
size distortion diminishes to zero as the identification becomes stronger. We can thus conclude
that the asymptotic F approximations are much more accurate than the asymptotic chi-squared
approximations.

Figure [2| reports the empirical size of the nominal 5% tests when ¢ = 0.9 and p = 0.9. The
configurations are the same as in Figure [I|, but the processes are now more persistent. The
average G is around 6 for every level of R?. The product of two independent AR(1) processes
with the same AR parameter ¢ is an AR(1) process with the AR parameter ¢?. Hence, the
moment process under consideration follows AR(1) with the AR parameter 0.9% = 0.81, which is
high but not empirically implausible. The qualitative observations we made for Figure [I| continue
to apply. The difference is that the chi-squared tests are more size distorted than before. This
is expected, as the LRV estimators have a large downward bias when the moment process is

SFor brevity, we refer to these three tests as Wald, Wald CUE, and LM, respectively. Their modified versions
are referred to as Wald*, LM*, and Wald CUE*, respectively.
"We refer to the modified versions as K*, J*, S* and J-K*, respectively.
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positively autocorrelated. Regarding the F tests, the S* and J-K* tests now slightly under-reject,
while the J* test continues to over-reject and the K* test still has a size lower than 5%.

Figure[3| has the same parameter configuration as Figure[2] except that now p = 0.3, indicating
less endogeneity. Here, the average G is 6 as well, although slightly smaller than in the previous
case. The figure provides further evidence that an asymptotic F test is more accurate than the
corresponding chi-squared test. Owing to the smaller degree of endogeneity, the Wald, LM, and
Wald CUE tests do not suffer from such a large size distortion as in Figure [I| when the instruments
are very weak.

Figure [4| reports the empirical sizes for ¢ = 0 and p = 0 (i.e., no serial dependence and no
endogeneity). Here, the average G is around 27. The size distortion of the Wald, LM, and Wald
CUE tests changes with the strength of the identification. When the instruments are weak, the
Wald, LM, and Wald CUE tests are under-sized. The F tests based on the modified Wald, LM,
and Wald CUE statistics are even more under-sized. This is a scenario when the F tests are less
accurate. When the instruments become stronger, the Wald, LM, and Wald CUE tests become
over-sized, and the corresponding F tests have an improved size accuracy. Consistent with our
theoretical prediction, the empirical size of the weak-identification-robust tests, namely the K, J,
S, and J-K tests and their modified versions, is invariant to the strength of the identification.

To sum up, our simulation evidence lends strong support to the higher accuracy of the F
approximations in most cases. In an overall sense, the K*, S* and J-K* tests are the most
accurate among all the tests considered.

To simulate the power of the tests under consideration, we generate the data under the local
alternative so that

Y = (X1, Xo4)B + ey,
for
13 c

B = (B1,52) "‘mﬁ

where & ~ N(0,I). We let £ be different for different simulation replications. That is, we do
not specify the direction of the local departure. Effectively, we simulate the average local power
averaged over all directions uniformly.

Figures report the power of all the tests under consideration. The parameter configu-
rations are the same as in Figures For the strength of the instruments, we consider an
intermediate value of R?2 = 0.5. The reported power is size-adjusted, and thus the power com-
parison is meaningful. While such a size adjustment is not possible in practice, it is feasible in
Monte Carlo experiments. Moreover, the size-adjusted power of the S test is the same as that of
the S* test, as they are based on the same test statistic up to a multiplicative constant. Similarly,
the J test and J* test have the same size-adjusted power. We can make a number of observations
from these four power figures. First, the first group of tests is, in general, more powerful than
the second group. However, Figure [5| shows that in the high endogeneity case with p = 0.9,
the second group of tests is more powerful when the local departure from the null is not large.
Second, among the second group of tests, the J test is in general less powerful. It is not a good
idea to use the J test alone. Third, for the first group of tests, the F test based on the modified
Wald, LM, or Wald CUE statistic is as powerful as the corresponding chi-squared test. For the
second group of tests, the K* test and J-K* are less powerful than the corresponding chi-squared
test. For the K and J-K tests, there is a cost to achieving size accuracy. Finally, the J-K test
appears to be more powerful than the K test, and the J-K* test is more powerful than the K*
test.
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Figure 1: Empirical sizes of the 5% tests when ¢ = 0 and p = 0.9.
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8.2 Stochastic discount factor model

To describe the data-generating process in this experiment design, we start with the asset pricing
equation derived from the agent’s intertemporal optimization problem with CRRA utility:

Cryr\
< grl) (Pe41 + Dt+1)] } ,
t

where ag ! is the discount factor, By is the risk aversion coeflicient, p; is the ex-dividend real price
of the asset under consideration, D; is the real dividend, and C} is the real consumption. In the
above, [ (+) is the conditional expectation conditioning on the information set at time ¢.

Let

Dy _ Ci Ut:&
Ci-1’ Dy

Then, the pricing equation can be rewritten as

1 _
v = —By [(Ct+1) Bo (14 vegq) dt+1:| . (16)
ap

Following Kleibergen (2005), we assume that (¢, d;) evolves according to the following Gaussian
VAR(1) process:

log ¢; 0.021 —0.161 0.017 log ci—1 Ect
( log dy ) - < 0.004 > * ( 0414 0117 > ( log dy_, ) * ( Eas ) : (17)
where (gct,€4¢)" are iid normally distributed with var(eq;) = 0.014, var(e.;) = 0.0012, and
corr(ect, €4t) = 0.43. The parameters in the Gaussian VAR(1) are calibrated to the log-growth
rate of U.S. per capita real annual consumption and the log-growth rate of real annual dividends
on the Standard & Poor’s 500 (SP500). Kocherlakota (1990), Hansen, Heaton, and Yaron (1996),
and Stock and Wright (2000) also use the above VAR(1) in their simulation studies.

To solve for v; under the above Gaussian VAR(1) dynamics for the state variables ¢; and
d;, we follow Tauchen (1986a, 1986b) and approximate the Gaussian VAR(1) using a discrete
Markov chain with 10% states (10 states for each of the two variables ¢; and d;). Using the
discrete Markov chain approximation, we can solve for v as a function of ¢ and d. With some
abuse of the notation, we write this function as v(c, d; ag, Bp)-

The data for our experiments are generated as follows. Given the model parameters o and
Bo, we generate ¢; and d; according to the Gaussian VAR(1) model in and then compute
vy = v (¢, di; g, Bg) , which is the solution to the Euler equation in . With {¢y, dy, fut}thl , wWe
compute the real returns of the asset

Pt D (4os)

Ry 1
Dt Ut

dir1 — 1.

Our simulated data then consist of the vector time series {(c;, dy, Re)}1_; -
In terms of ¢;y1 and Ry41, the Euler equation becomes

By [(ciq1) P (1+ Ri1) —ag| =0,t=1,...,T. (18)

The above conditional moment restriction implies the following unconditional moment restric-
tions:

Ef (Y, a0,B8,) =0,t=1,...,T, (19)
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where Y; = (¢p41, Rev1, Zt)

f (Y, a,B) = [(CtJrl)_B (14 Riy1) — a| ® Z,

and the vector of instruments Z; consists of a constant and the three lagged values of consumption
growth and asset returns:

Zt = (17 Ct;Ct—lact—27RtaRt—17Rt—2) S R7-

We are interested in testing Hy : 8 = [ against Hy : 8 # [,. All the tests under consideration
are based on the GMM using as the moment conditions.

In the simulation experiments, we set ap = 1/(0.97) and fy = 1.3. For the parameters in the
Gaussian VAR(1) process, we also consider a model in which corr(e.,e4) = 0.95 and a model
(strong identification) in which the intercept and VAR matrix are equal to 2 times those in (17)).
As in the linear IV simulation study, we use the Fourier basis functions and select the number
of basis functions G using the AMSE criterion in Phillips (2005). The average G (Avg G) and
the interquartile range (IQR G) are reported with the results. The sample size is 250 and the
number of simulation replications is 10,000.

Table [1] reports the empirical size of the weak identification-robust tests, showing that the
F tests have a more accurate size than the corresponding chi-squared tests. In addition, the
size properties of all the tests are not affected by the identification strength and the correlation
between e, and 4.

Table 1: Empirical sizes of the 5% tests

Weaker 1D Weaker 1D Stronger 1D Stronger 1D

corr(ee,eq) = .43 corr(e.,eq) = .95 corr(ee,eq) = .43 corr(ee,gq) = .95
K 0.114 0.106 0.111 0.106
K* 0.051 0.047 0.049 0.049
J 0.121 0.115 0.124 0.112
J* 0.049 0.050 0.053 0.049
S 0.143 0.138 0.146 0.135
S* 0.049 0.047 0.052 0.046
J-K 0.136 0.127 0.134 0.129
J-K* 0.098 0.095 0.100 0.096
Avg G 32.674 33.870 33.004 34.182
IQR G 2 0 2 2

“Weaker ID” refers to the empirically calibrated VAR(1) model for (log (ct),log (d;)). “Stronger
ID” refers to the VAR(1) model whose AR matrix is twice the AR matrix in the empirically
calibrated VAR(1) model.

Figures report the power functions for the tests. The general pattern that emerges is
that the F tests have lower power, but the shape of their power functions closely matches that
of the power functions of the original chi-squared tests. The S and J-K tests and their modified
versions seem to have good power properties. However, as shown in Table [1}, the J-K* test has a
larger size distortion than the S* test. In summary, the F tests not only have a more accurate
size, but also retain the power properties of the chi-squared tests.
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8.3 SDF model for consumption growth and return on SP500

In this section, we use yearly observations (1871-1993) of U.S. consumption and stock returns to
construct asymptotic confidence sets for the risk aversion parameter of the SDF model described
in Section The dataset we adopt is the same as that used by Stock and Wright (2000) and
Kleibergen (2005). As explained therein, the consumption series consists of nondurables and
services per capita, while the stock returns are based on the Cowles Commission index, followed
by the annual average price of the Standard & Poor’s monthly composite index.

To obtain a confidence set for 5, we specify a sequence of increasing values of 5. We compute
the statistics of interest (K, J, and S statistics and their modified versions) for each value of the
sequence of §. Then, the (1 — «)100% confidence set of § associated with a test consists of the
values of 3 that are not rejected by the test at the level of 100a%.

We use the moment conditions in (19)) with two sets of instruments. The first set consists of
a constant and the one-period lagged observations of the two series, that is, Z; = (1, ¢, R¢). The
second set consists of a constant and the two-period lagged observations of the two series, that
is, Zt = (1,¢t—1, Ri—1). We follow the argument of Hall (1988) and lag the observations by two
periods to avoid a problem with aggregating the consumption data.

For the conventional K, J, and S statistics, the covariance matrices are estimated using Newey—
West covariance matrix estimators with one lag as in Kleibergen (2005). For our modified K, J,
and S statistics, we apply the data-driven procedure shown in the previous section to select the
number of basis functions used in the LRV estimation. Figures [14] and [15| report the difference
between 1 and the p-value (i.e., one minus the p-value) for the tests that test the null Hy : § = f,
against Hy : B # B, for a sequence of values of ;. The horizontal line at 95% in the figures
helps us construct the 95% confidence set. More specifically, the 5 values whose “one minus the
p-value” is below 95% belong to the 95% confidence set.

In the first case with Z; = (1,¢, Ry), the “one minus the p-value” plots of the K test and
K* test are similar. The 95% confidence set for 8 based on the K test is slightly larger than
that based on the K* test. In the second case with Z; = (1, ¢;—1, Ri—1), however, the “one minus
the p-value” plots of the K test and K* test differ considerably. The 95% confidence set for 3
resulting from the K* test is much smaller than that from the conventional K test. However, the
“one minus the p-value” plot of the J* test indicates that support for the moment equations is
limited, as its “one minus the p-values” are above 0.95 in most cases.

9 Conclusion

In this paper, we combine the ideas of weak identification and fixed-smoothing asymptotics in
a CU-GMM framework. The S statistic of Stock and Wright (2000) and the K statistic of
Kleibergen (2005) allow us to conduct hypothesis testing in weakly identified models. On the
other hand, Sun (2014b) and Hwang and Sun (2017) obtain the asymptotic distribution of the
trinity of test statistics in a two-step GMM framework using fixed-smoothing asymptotics. The
literature on weakly identified models does not pay particular attention to the estimation of the
LRV of the moment process, while the literature on fixed-smoothing asymptotics usually imposes
strong identification assumptions. We bridge this gap in the literature by applying this latter
approach in a potentially weakly identified CU-GMM framework.

One striking result of the fixed-smoothing literature is that, after some simple modifications,
the commonly used test statistics are asymptotically F-distributed. A key result of this paper
is that this property continues to hold for the weak-identification-robust test statistics. In par-
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ticular, the modified versions of the K and S statistics are asymptotically F-distributed. This is
convenient, since we can avoid using simulations to obtain the critical values for these tests. The
simulation results show that in finite samples, the F approximations deliver better results than
the conventional chi-squared approximations.

10 Appendix A: Proofs of the Main Results

Proof of Lemma Using Assumptions and and the weak convergence results in

and @, we have

Vi (6o)
_1i 1ZT:<I> (t) [f (¥2,60) = (Y. 60)] 1i<b <t> [f (Y2,60) — F(Y,60)] |
Gé:l \/thl e\ t, 0o ;00 T 2 e\ 7 t, 00 0
1 G 1 1 / 1 G
:>G€§::1(/0 @e(?“)dBf(r)> </0 @g(r)dBf(r)> _G;::lgmgf’b
and
Agyf(a)

jointly. Therefore,

Drj (60) — VTEg; (Yy,60)

T ~ T
(Yy,00) — By, (Y, 00)] — ———2V, (0p) | —= Y;, 0
T ; gj ts V0 g] ( t 0)] 80] bid ( 0) \/T ; f( t 0)
1 1 & -
= a ngj,gflf,e a fo,eflf,e By (1) := ng'f (1).
=1 =1

By Assumption we have

ﬁDTﬂ- (00) = Do j € R™¥1
for

Dooj =115+ 1 {/{ = ;}ng.fu).
u

Proof of Theorem We first relate the limiting distribution K of the original K
statistic to the limiting distribution of the rescaled two-step Wald statistic in Hwang and Sun
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(2017, hereafter HS (2017)). If we replace R by the d x d identity matrix and G by Do in their
equation (19) on page 286, then the limiting distribution d - Fo of the two-step Wald statistic
in HS (2017) takes the same form of K ¢ here. In fact, the two distributions are seemingly
different only in terms of the notations. Noting that B, (1) and Ws, in HS (2017) are the same
as Wy (1) and C here, the limiting distribution K g is identical to d-Fu, in HS (2017). Careful
inspection reveals that the limiting distribution Ju ¢ of the J statistic Jr (f) is identical to Juo
in HS (2017, equation (20), page 286).
Recall that

G ~ ~
~ 1 Cua Cy > < Wfd (1> )
Coo = — L= ( ~ ~% ) and We (1) = ' )
G ;nﬁwﬂ Caa Coq s Wiq (1)

Let édd-q = édd quC C C'qq.d = éqq — éqdé;ilédq. By definition, GC’OO ~ W, (G, Im), a
Wishart distribution Wlth G degrees of freedom. Using a basic property of Wishart distributions,
we know that Gédd.q ~ Wy (G —gq,14), and that C’dd.q is independent of (C’dq, C'qq).

It then follows from HS (2017) that

KKr (60) Koo,
(G )= (5)
4 ( [Wf,d (U‘édq Wfq }, ddq [Wﬂ 1) - édqét;zlwfﬂ (1)} )

Wfq( ) O 1I/qu( )

By the continuous mapping theorem, we have
< K (6o) ) = GIC%H (¢*)'~ngl.qw* = ( Koes > (20)
Jr (o) G Wig (1) Cog' W (1) 50,0

Wra (1) = CagCo Wy, (1)
1+ W, (1) Coft W (1)

Using the same conditional argument as in HS (2017), we can show that " ~ N(0, ;) and
* is independent of Wy, (1) Co .t Wy,q (1) and Cyq. Note that (W (1), Cyq, Cgq) is independent

of é’dd.q. So, as a function of (Wy (1) ,C’dq, C'qq), 1™ is also independent of édd-q- We have therefore
shown that IC;O’(, is independent of j;ﬁ and that both IC;Q@ and ‘-70*0,0 are equal to a rescaled
Hotelling’s T2 distribution, i.e., a rescaled quadratic form in a standard normal vector with an
independent Wishart weighting matrix. The rescaling is designed to turn a 72 distribution into
an F distribution. Using the relationship between the 72 distribution and the F distribution, we

have
( K% (6o) ) N < Fig-m+1 >
\7; (00) Fq,G—q+1

where Fyy g—m+1 and Fy g—4+1 are independent I distributions. m

where

Y=
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Proof of Theorem [4.2l We have
G Z (593 e )

= [V V5 By ) 4 By ()] - 4

ng'f (1) = Qj éo_olwf (1)

[ VitV gy +£9j'f/n/f,f:| O Wy (1)

MQ

f:

Wy (1) CLWy (1)

—~1/2 —
= WVaus Vg W5 (0 + Byyp (0] = VsV G ngj rfe

G

1 /
G 2 Lo
(=1

G

1 .-

G > ”gj~f,éﬁ},e] C' Wy (1)}
/=1

= Bg,.p (1) — Ot Wy (1)

1/2

= Vg/f {ng'f (1) -
1/2+%

=V, Wopr (1)

where

G G -1

. 1 1

Wo,op (1) = W,z (1) = [G > :ﬁgffﬂ?},z] [G > :nf,/ﬂ?},fz] Wy (1).
/=1 /=1

Conditional on {7 M}le and Wy (1), ng. (1) is normal with mean zero and variance

Im + B GZ”Q;N ”fﬂc Wy (1 ZWf 'Cx 77f,1z><77 ] {Ufe}g 17 f(l)]
1 &, - G
= Im +E 5 Z’r]/f,ﬁco_olwf (1) X ngj-f,f G anj fg X Wf )/ Co_olnfj {nf,e}gzl ) Wf (1)
(=1

G G
1 ~_ = G
= 1im + E Vap) Z anf,écoolwf (1) X (ngj-f,inlgj,fj> X Wf (1)/ Coolnfj ’ {nf,é}gzl 7Wf (1)

B =1 j—1
G
=dm + G2 Zn}fco_olwf (1) x Wy (1) Cog gy ] I,
=1

So, conditional on {nm}le and Wy (1),

Wy,.r (1
ot (1) ~ N(0, Iy).
\/1 + GWf ( ) CO_OIWf (1)

Given that the conditional distribution does not depend on the conditioning variables, we have

Ve (1) ~ N0, I,)

Wy (1) =
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unconditionally. The covariance between W;j. 7 (1) and Wy (1) is

cov (W;j,f (1), W, (1))

We,.r (1) = [é Z?:l ngj'f,mlf,Z} Cx'Wy (1)
= cov S Wr (1)

VI & (1) Cwy (1)

G S
o W Wy . & S g, CW (W (1)
VI W (1) Wy (1) VI W (1) Gl Wy (1)
~0-0=0,

using the law of iterated expectations. Therefore, W;j . (1) is independent of Wy (1) . In addition,
W;j,f (1) is independent of 7, for any £ =1,...,G, as
cov (Wg*j,f (1) ,nf,f)
B (ng-f (1) = [& Sy, ] Gt Wy (1) )
- I+ EW (1) C Wy (1) v
Eng.f (1) 773”,6 - [é Zgzl Ugj~f,k77},k] C~'c?olVVf (1) 77If¢
VI & (1) C Wy (1)
B Wy, ([ {nga} Wy (1), Coc]
VI W, (1) C Wy (1)
B [ gl g} Wi (1) G o CW (1)

\/1 + 2wy (1) C Wy (1)

As a consequence, W;j y (1) is independent of Coo.

Let
~w
OOJ
\/1 + 1wy 1) Ry (1)
W, (1
1/2v;/; Wy ()
V1t W) golwf(l)
and Df = (D:;o 1.+, D% ;). Then

where D% is independent of C, and W (1).
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Next,

T
=S o) = vy Wy ) - i {Dretps ) {Breswr )]
t=1

and so

0.9}

Tr (00) = Tnop = [Wf (1) - Dx, {D;gé;;ﬁ;o}*l {f);;égolwf (1)}}/0—1
< wy - be{pzegns) {redws w}]

which holds jointly with Kr (0o) = Koo p-
Given that D7, is independent of C! and Wy (1), we can use the conditioning argument
(conditional on D% ) and the same proof for Theorem 4.1] to obtain

< K7 (6o) > N ( FaG—m+1 )

Jr (0o) F.6—g+1

conditionally on D, . But the conditional distribution does not depend on DY, . So the above also
holds unconditionally. =

Proof of Lemma Part (a). This part can be proved using Sun (2014a). Details are
omitted.

Part (b). We prove the marginal convergence in only. The marginal convergence for the
other part can be proved similarly. The joint convergence can be proved using the Cramer-Wold

device. Using Assumptions and [5.2|(a.i), we have

1

nga (¥i.0)

T
- Y i)+ VT @ - a0) (140, (1) = 0, ().

VT (& = ag) (1+ 0, (1))
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Part (c). Note that for j =1,...,d,,

T
> (Y, 00)

t=1

H‘H

1 or—1

T
1 1
= >4, (¥i00) O <)
T ; ’ PAVT
This holds because by Part (b) we have
Vgt (60) = ngg],fgfﬁavﬁ (6o) = foszz,

and T2 £ (Vi,60) = O, (1). As a result,

1 o Dr
th_;ga (ﬁft,eo) \/T +0p (1)
Using this result and Assumption (b), we have
~—1/2 | 1
Vg | = 2 f (Y lo)
t=1
1 1 o
—1/2 > R
=V, TZf(Yt,@o)—<TZga (n%))ﬁm—ao)]
t=1 t=1
o 1 1 & Tao1Dra]  Di
:V_l 27 Im_ = fe% Y;G ,OAV—l < 70[‘771 Yae 1+O ]'
-1
~ 19D Dy o~ 1 Dr Dy, po1e —1/2
=<1, - 1/2 ’a> 2yt =2 = V25 (Y2, 00)(1 + 0, (1))
{ (5 55) |0 T | \FZ t s

g 3 (55 1009) 00

= Mco_ol/zna SCM?Br(1).

Combining this with ‘“/1;1/2(@0) = Vﬁflﬁ (0o) +op (1) = Vﬁr V24 0p (1) leads to the desired result.
Part (d). The columns of Dr g (6) are

) 1 I 1 .
Drgj-d.(00) = == > 9;(Yi,00) = Vg, ;(00) Vi (B0)—= > f (Yt, 90)
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for j = do +1,...,do + dg. It follows from Assumption (c.ii) and Part (c) that for j =
do +1,...,do +dg,

Dr.gj—d,(00) — VTEg;(Yy,00)

1 T
ﬁ;g 0 g 0

T
o r—1/2 1 r—1/2
— Vo, rVp /MV;/ZDM\/TZ(Vﬁ /f(Yt,eo)) (1+0p (1))
t=1

G
1 — — 2%
= By, (1)~ | 5 Y ollhe| CPM ey - CLM2By (1) = By (1)
=1
When & € [0,1/2), we have
DT, (90) K o
# =T Egﬂ(}/t, 00) + Op (1)

= T"Egs(¥;, 60) — T°B | g5(Yi, 00) — g5(Ys, o) | + 0, (1) = s,
where we have used Assumption (c.i). Similarly, when x = 1/2, we have

DTuij*ch (éo)
T1/2—k

for j =do +1,...,dy + dg. Combining the two cases k € [0,1/2) and k = 1/2 yields

=1L + By (1)
Drs(00)/TY* " = Dy 5.

Proof of Theorem By simple calculations, we have

Note that



and

_ [RB (ﬁ'émlﬁ)_le] [ﬁﬁ—na (H;Cgolna) 1ﬁ;coolnﬁ]lco;wf (1)
- [RB (ﬁ' ~;01ﬁ)_lR'ﬂ] [ﬁfﬁc;olﬂm e CY2W; (1)}
We have
MO Moo CoPWy (1)
- {Rﬁ <H’CO_O1H)_1R’B 1R5 (ﬁ’c;oln)_ e W, (1)
Therefore, _

Comparing this with the distribution o, in HS (2017), we can see that Koo g is the same as pFoo
if we replace G and R in HS (2017, equation (19), page 286) by II and Rg, respectively.
To derive the limiting distribution of J7 (), we let

1
s 1d 0]
F — T1/2 K B > .

Koo — {Rﬁ (o) " resw, <1>}' s (o) Rfﬁ] - {Rﬁ (rem) " iesw, <1>} |
(
1

Then ﬁFT = DT(éo)FT —P H, and

1 &y s
ﬁ;f(yi,@o)

~1/2,s I P O NERY PO BV SO | R
= ];/2(90) {Im ~ Vg Y2(00)Dpr {D;Tvﬁ 1(90)DFT} DprVg 1/2(90)} Vy UQ(GO)ﬁ Z [ (Y, 6p)

= CL2 {Im — e wetn) Tt n/c;}ﬂ} M, 12, - C/?By (1)

~ ~ ~ [ ~, ~ ~1—1 - < ~
= v,/*Cl? {Im —CcZM [H’cc;ln} H'C;W} Mg-1og - O P W (1)
- CMPWg (1)

1/2 A
= V3 2CY*Myrjag - Myrpog

= V32O M 1oy - C2W5 (1)

— v [Wf (1) —II {ﬁ' ";Olﬁ}_l {H’é;olwf (1)}] .



Therefore,

Tr(00) = Toop = [Wf (1) -1 {ﬁ’é;olﬁ}_l {ﬁ’é;olwf (1)}]Iéool
x [Wf(l)—ﬁ{ﬁ’ ) e

The weak convergence holds jointly with the weak convergence: ICT(éo) = Koo,3- With some
notational changes, we can see that J s is the same as Jy in HS (2017, equation (20), page
286).

It now follows from HS (2017) that

Kr(0o) Keo,
(o )= (525)
i( |:Wf,dﬁ (1)—C~'dﬂ7q0 Wfq } [Wde Cdﬁ,qC Wf,q (1)} )
Wi (1) C Wf, (1)

Hence

. /5 G—dg—q+1 / %
( K7 (6o) ) N P (wﬁ) dgdﬁ qwﬁ
Wf,d@() CdB qC Wf,q(l)

\/1 + Wiy (1) Cq—tz Wiq(1)/G
Using the same proof as that for Theorem we then have

< ’C?p@o) ) N < Fusc-dg—q1 >
JT*<90) Fq,G—q+1 7

where the two F' variates are independent. m

where

o =

Proof of Lemma Since U, is an m x m orthogonal matrix, [U;C’goan,UC’YWf (1)
has the same distribution as [C'O_Ol, Wy (1)} . In term of the distributional equivalence, we can

replace [UC’YCN'O_Oan, U Wy (1)] by {CN'O_ol, Wy (1)] . We will do so throughout the proof so that the
distributional representations in the lemma hold jointly.
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Part (a).
~ ~ o~ ~ -1 . .
Wi (1) = M (M,C5MT)  TLC Wy (1)
~ -1 ~
= UnAaSa (S;A;U;C;;UQAQSQ) SLALULCL ULUL W, (1)

~ —1 ~
—4 Ay S, (S;A’ac—lz\asa) SLALCIW (1)

— U, A, (A’aéo‘olAa)fl AL G Wy (1)
— UnAy (A’aé;olAa)_l (4, 0.) C2twy (1)
1

= (Ua1, Ua2) ( (7 (1) = CogC W (1) )

= Ut W (1) = CagCi Wy (1)]

- e .oN—-1_ _C .01 _
I, (H;C;olna) IL,CL Wy (1) = Ua( Wi (1) = CogCog Wra(l) )

Using this result, we have

Oy xé ~_
= (Ua1,Uq2) < @diiﬁq > Wi (1) = UnaCo' Wy g (1).
qq9
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Part (c) Using the presentation
s s O -
CoPMprog CoPWy (1) =7 Us < doyd > Wiy (1)

in part (b), we have

i7(2)
ng'f (1)
1 G
- ng'f (1) - (G anJ f,@n},ﬁ) Cx Mégol/?ﬁa Cool/2Wf (1)
(=1

G
1 Od. xi
=Us |Wy,.p (1) = <G anj'fvmlf!) < ~:>iq ) Wy (1)]
=1 99
1< .
/=1

Part (d). We have

~ L ’
= U, CU! |1, — ( Uat, _Ualca(jcq_ql ) ( 7; ﬂ .

Using Uq1U.; + Ua2Uly = I, UlqUa2 =0, U1 Us1 = 14, UlyUs2 = Ippy—q, , we can simplify the

o
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above expression as

|:Im - UalU(;l + Ualéa(jéq_quéz}

= U, < Uan > [U Uy + Uy CagCU! }
— YaVYoo / a2Un2 + al“aq“gs Ya2
a2
7.0 CagCii Uls
e
=U, x ?éﬁh 1 —C’;i:qad N(; ) ( éaqé‘;‘il > 02
—CigaCiaalyq » pray Iz
= UVa < é—l Cf—l 601~ 0_10 ~(;1—1 >U(/x2
dGa Yqgaiar§qg v qq
O _
= (Ua1,Ua2) < 21 | Use = Ua2Cag' Ups.
qq

Proof of Theorem We start by proving two key results. First, conditional on {77 f,q,e} =

{npaet=1,...,G} and Wy4(1), W@

o;.¢ (1) is normal with mean zero and variance
J

1 ~ 1 -
(1+ Wra 1) Ct Wi ) 1= (14 53 ) o
So, conditional on {Uf,q,z} and Wyg (1),

77(2)
ng'f (1)

V14+G 1T
Given that the conditional distribution does not depend on the conditioning variables {17 f,q,e}
and Wy g4 (1), we have

~ N (0, In).

77(2)
ng'f (1)

V1+ G 1Ts
unconditionally and W;i)f (1) /V/1 4+ G—1J,, is independent of {nsse} and Wyg(1).

Second, conditional on {n;z,} and Wy4 (1), AlW}U (1) is normal with mean zero and vari-

~ N(0,Ip,),

ance

where Iy, is the do X do identity matrix. So, conditional on {n;s,} and Wy g4 (1)
1
w1

V 1+ Giljoo

~ N(0,Us1ULy).
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The conditional distribution does not depend on the conditioning variables. So W;I) (1) /V1+G 1T
is unconditionally normal and is independent of {n f’q’e} and Wy (1).

Note that C’qq is a function of {nf@g}. It follows from the above results that [):;o’ﬂ’j is
independent of éq_ql and Wy 4 (1). Therefore, conditional on U&QE;Q 5 € R7%45  the distribution
of K 3, which is given by
2
P-

’

Keop = ‘

[C_l/sz, (1 )}

—1/2 N
CoPut,Dr g

takes the same form as that of K9 = HP6~,—1/2D [C’ 1/2Wf }H given in . The only

difference lies in the dimensionality. We can use the same argument to simplify K., 3. More
specifically, we write

o= (& &) = (203

qq

and let UpApSp be the SVD of (D%, 5)'Uag. Then
Koo =1 {UpADSDC3 W13 (1)} {UDADSHCLSHALUD ) 1
x {UpADpSpC Wiz (1)}
—  ApCWeg )} {anCAa0 ) {AnCy Wy ()
=1 [ Wy (1) = CanCoa Wy (0] ity [Wir (1) = GG W ()]
Next, we find the limit of J7(p). In the proof of Theorem we will show that
Sr(00) = Wi (1) Ci! CaaCig Wirq (1) = Wig (1) Ci' Wi (1).
The above convergence holds jointly with the weak convergence:
ICT@O) = [Wf,ﬁ (1) - éﬁqét;qlwf,q (1):|,C[-36q [Wfﬁ (1) - éﬁqéz;qlwf,q (1)} :
So
Tr(bo) = Sr(bo) — Kr(bo)
= Wye (1) C'Wig (1) — [Wf,ﬁ (1) = CpeCog Wrg (1)}/@[}5@ [Wf,ﬁ (1) = C3sC Wiy (1)} :
But
Wrq (1) Cog Wi (1)
_ < Wy (1) >'( Cps, Cag )_1 ( Wy (1) )
Wiq(1) Cyps Cyq Wyq(1)
_ l ( Coatrs —Casy CaaCo! ) ( Wi (1) ) ||
0, Cod? Wiq (1)
=Wy 1) C~1q_qlVVf7q (1)

r ~ ~ I . ~ ~
+ Wi (1) = CgCog Wrg (1)] Bhq [Wm (1) = CpyCoq Wy (1)

/
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We have ) )
Jr(0o) = Wi, (1 C’(;]le,q (1).

Combining the limits of Kr(6y) and Jr (o), we have:

Jr(%) Wiq (1) CtWy, (1)
As a result
% (2 G—dg—q+1 w\! S— % %
< K5(00) > N i (V5) Cag ¥ ) _ ( Koo )
NVACY S (1) Cogt Wig (1) Ay
where

Wf”@ (1) - éﬁqéq_qlwf,q (1)

VI G Wy (1) G Wiy (1)
The form of (K%, 5, J%, )" is the same as that of (K} * o) in . Using the same argument

00,07 Y 00,0

at the end of the proof for Theorem [4.1 we obtain
< ’C*T@o) > N < Fay0-ds—q+1 )
\7:?:(90) Fq,quJrl

Proof of Theorem The weak convergence result for S} (fg) holds because

v =

-G o1
N G—m+1 1
St (0o) = GTBJ“ (1) e ;ff,ﬁflf,é By (1)

G
G-m+1 ! ,
= T am Wy (1) a ;ﬁf,ﬂ]f,e Wy (1)

d
- Fm,G—m+1 .

It remains to prove the result for S (fg). Note that Lemma (c) holds under the assumptions
given in the theorem. Using|5.]] - and [5 - , we have

N ’
ST(Q()) = |:M . Co_ol/QBf (1)] M . 00_01/23]0 (1)

CxM M, O

= Wy () C2M Mg aagy | (ML 1oy CRM2W5 (1)]
— 4 UaaCWa (U] (UaC202) (ULCH2UL) Uno Gl W s (1)
aq aq

=Wy (1) Ci (UnaUaCocUtUas ) C Wiz (1)

(g)@(g)

Cei Wy (1)



Therefore,

11 Appendix B: the nonpivotality of the fixed-smoothing asymp-
totic distribution in the intermediate case
To prove the negative result, we can consider the special case with m = 2 and d = 1. In this case,
D7 is a 2 x 1 vector:
D,
Vol

bid -1/2 1/2
= + Vg 7V, 5f (1)
\/1 Wy (1)

_ (1§ +0, 01 ~1/2 1/2
_<H;+52>for(52> V V gf(l)

where (61,d2)" € R? is N(0, VﬂflpV Vﬁ 1/2) In the proof of Theorem we have shown that
(61,02)" is independent of Wy (1) and Cx!. Note that

r)*
no Doo

D%, = =
T IDgl

lies on the unit circle and its distribution is completely characterized by its polar angle. The
distribution of the angle clearly depends on the distribution of the ratio

I} + 01
I3 + 32’
which in turn depends on the nuisance parameters Vﬁf VT and Vﬁj 1 2‘/91.5[2.

Now,
Koo = Wy (1) €D [DRLCL D) DLCLW, (1)
wryeps]  (CRw .62 b

- [ﬁggé;olﬁgo} HC 1/2 H HC 1/2Do Hégol/QWf(l)HZ

= cos? () HC’O_OlﬂWf (1)‘ ’

I

where Y is an angle spanned by the vectors C’gol/sz (1) /] ]C’gol/sz (1) || and 2 Ds /HC_l/zDO l|.
Let Y1 and Yy be the polar angles (in [0,27]) of the two vectors Cog V2 Wy (1) /HC’O_Ol/QWf( 1)
and Cg/? D2 /HC’_l/2 9.||, respectively. Then we can take T = T; — To.
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We can make three observations. First, we can show that cl/ 2Wf (1)/ HCN'O_OI/ 2Wf (1)]] is
uniform on the unit circle. For any orthogonal matrix U, we have

CuPwy () weSPunuwy ), CEMPwr ()

Ha;WWf (1)“ B H(Ué;ol/QUf)Uqu)H - Hé;olﬂwf (1)H'

That is, the distribution of Csg’ 2Wf 1)/ HCN'O_ol/ sz (1)]| is invariant to any rotation. This

implies that ~o_ol/2Wf (1) /Hé'gol/sz (1)]| is indeed uniform on the unit circle. That is, T is

uniform over [0, 27]. Second, while ol 21580 /| ]C’o_ol/ 2[)30\\ lies on the unit circle too, it is neither
symmetric or concentrated on a single point on the unit circle, as DJ  does not satisfy these
properties either and there is dependence between C’;ol/ % and Ego when IT # 0. The distribution
of C/ 2[)30 / ]|C~’o_ol/ QDgOH depends on the nuisance parameters in a complicated way. So, T is
not free from nuisance parameters. The first two observations imply that the distribution of T
is not nuisance-parameters free. Third, ]\é;l/ 2Wf (1) ||? is free from nuisance parameters. It
follows from these three observations that the distribution of K ¢ is not nuisance-parameters

free under the fixed-smoothing asymptotics.
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