Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Modeling prior information of common genetic variants improves gene discovery for neuroticism

Abstract

Neuroticism reflects emotional instability, and is related to various mental and physical health issues. However, the majority of genetic variants associated with neuroticism remain unclear. Inconsistent genetic variants identified by different genome-wide association studies (GWAS) may be attributable to low statistical power. We proposed a novel framework to improve the power for gene discovery by incorporating prior information of single nucleotide polymorphisms (SNPs) and combining two relevant existing tools, relative enrichment score (RES) and conditional false discovery rate (FDR). Here, SNP's conditional FDR was estimated given its RES based on SNP prior information including linkage disequilibrium (LD)-weighted genic annotation scores, total LD scores and heterozygosity. A known significant locus in chromosome 8p was excluded before estimating FDR due to long-range LD structure. Only one significant LD-independent SNP was detected by analyses of unconditional FDR and traditional GWAS in the discovery sample (N = 59 225), and notably four additional SNPs by conditional FDR. Three of the five SNPs, all identified by conditional FDR, were replicated (P < 0.05) in an independent sample (N = 170 911). These three SNPs are located in intronic regions of CADM2, LINGO2 and EP300 which have been reported to be associated with autism, Parkinson's disease and schizophrenia, respectively. Our approach using a combination of RES and conditional FDR improved power of traditional GWAS for gene discovery providing a useful framework for the analysis of GWAS summary statistics by utilizing SNP prior information, and helping to elucidate the links between neuroticism and complex diseases from a genetic perspective.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View