- Main
Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.
Published Web Location
https://doi.org/10.1016/j.redox.2020.101549Abstract
Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (pO2) in parallel with free and enzyme-bound reduced nicotinamide adenine dinucleotide (phosphate) [H] (NAD(P)H) and flavin adenine dinucleotide (FAD, a proxy for NAD+). Previous optical methods for these measurements had accompanying problems of cytotoxicity, slow speed, population averaging, and inability to measure all redox parameters simultaneously. Herein we present a Förster resonance energy transfer (FRET)-based oxygen sensor, Myoglobin-mCherry, compatible with fluorescence lifetime imaging (FLIM)-based measurement of nicotinamide coenzyme state. This offers a contemporaneous reading of metabolic activity through real-time, non-invasive, cell-by-cell intracellular pO2 and coenzyme status monitoring in living cells. Additionally, this method reveals intracellular spatial heterogeneity and cell-to-cell variation in oxygenation and coenzyme states.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-