Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Clinical utility of brain-derived neurotrophic factor as a biomarker with left ventricular echocardiographic indices for potential diagnosis of coronary artery disease

Abstract

Brain-derived neurotrophic factor (BDNF) plays a central pivotal role in the development of the cardiovascular system. Recent evidence suggests that BDNF has adverse subclinical cardiac remodeling in participants with cardiovascular disease risk factors. Relating serum BDNF levels with two-dimensional echocardiographic indices will provide insights into the BDNF mediated pathophysiology in coronary artery disease (CAD) that may shed light upon potential diagnostic biomarkers. For the study, 221 participants were recruited and classified based on coronary angiogram examination as control (n = 105) and CAD (n = 116). All participants underwent routine blood investigation, two-dimensional echocardiography, and serum BDNF estimation. As a result, total cholesterol, triglyceride, low-density lipid, high-density lipid, HbA1c (glycosylated hemoglobin), serum creatinine, eosinophils, lymphocyte, monocytes, neutrophils, and platelets were significantly elevated in CAD individuals compared to controls. Notably, the serum BDNF was significantly lower in individuals with CAD (30.69 ± 5.45 ng/ml) than controls (46.58 ± 7.95 ng/ml). Multivariate regression analysis showed neutrophils, total cholesterol, left ventricular mass index, mitral inflow E/A ratio, and pulmonary vein AR duration were associated with low BDNF in CAD. Four independent support vector machine (SVM) models performed to ensure the BDNF level in the classification of CAD from healthy controls. Particularly, the model with serum BDNF concentration and blood parameters of CAD achieved significant improvement from 90.95 to 98.19% in detecting CAD from healthy controls. Overall, our analysis provides a significant molecular linkage between the serum BDNF level and cardiovascular function. Our results contribute to the emerging evidence of BDNF as a potential diagnostic value in CAD that might lead to clinical application.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View