From the Mahler conjecture to Gauss linking integrals
Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

From the Mahler conjecture to Gauss linking integrals

Published Web Location

https://arxiv.org/pdf/math/0610904.pdf
No data is associated with this publication.
Abstract

We establish a version of the bottleneck conjecture, which in turn implies a partial solution to the Mahler conjecture on the product $v(K) = (\Vol K)(\Vol K^\circ)$ of the volume of a symmetric convex body $K \in \R^n$ and its polar body $K^\circ$. The Mahler conjecture asserts that the Mahler volume $v(K)$ is minimized (non-uniquely) when $K$ is an $n$-cube. The bottleneck conjecture (in its least general form) asserts that the volume of a certain domain $K^\diamond \subseteq K \times K^\circ$ is minimized when $K$ is an ellipsoid. It implies the Mahler conjecture up to a factor of $(\pi/4)^n \gamma_n$, where $\gamma_n$ is a monotonic factor that begins at $4/\pi$ and converges to $\sqrt{2}$. This strengthens a result of Bourgain and Milman, who showed that there is a constant $c$ such that the Mahler conjecture is true up to a factor of $c^n$. The proof uses a version of the Gauss linking integral to obtain a constant lower bound on $\Vol K^\diamond$, with equality when $K$ is an ellipsoid. It applies to a more general conjecture concerning the join of any two necks of the pseudospheres of an indefinite inner product space. Because the calculations are similar, we will also analyze traditional Gauss linking integrals in the sphere $S^{n-1}$ and in hyperbolic space $H^{n-1}$.

Item not freely available? Link broken?
Report a problem accessing this item