Skip to main content
eScholarship
Open Access Publications from the University of California

Plasmacytoid dendritic cell number and responses to Toll-like receptor 7 and 9 agonists vary in HIV Type 1-infected individuals in relation to clinical state.

  • Author(s): Kaushik, Shweta
  • Teque, Fernando
  • Patel, Mira
  • Fujimura, Sue H
  • Schmidt, Barbara
  • Levy, Jay A
  • et al.
Abstract

In HIV-1 infection, plasmacytoid dendritic cell (PDC) numbers and function are decreased. No detailed comparisons of PDC responses to various stimuli in HIV-1-infected patients are available. Using for the first time purified PDCs, we compared PDC responses [interferon (IFN)-α production/cell] to various stimuli in a large number (n=48) of HIV-1-infected patients and healthy volunteers (n=19). Toll-like receptor (TLR)7- and TLR9-induced expression of PDC surface activation and maturation markers was also compared in the two populations. We have confirmed that PDC number coincides with CD4(+) T cell counts and clinical state. Notably, we have shown that a direct association of PDC function in terms of IFN-α production/cell exists with PDC numbers and CD4(+) cell counts when PDCs are exposed to a TLR9 ligand and HIV-infected cells, but not with a TLR7 ligand. Moreover, in the HIV-infected subjects but not the healthy controls, the magnitude of IFN-α release per PDC in response to the TLR7 ligand is significantly (p<0.01) lower than that to the TLR9 ligand. However, in both study populations, the TLR7 stimulation in comparison to TLR9 stimulation induced higher expression of PDC surface activation and maturation markers and significantly (p<0.05) decreased the expression of BDCA-2, a negative regulator of interferon. Furthermore, the cross-ligation of BDCA-2 significantly (p<0.05) inhibited TLR9- but not TLR7-induced IFN-α production by PDCs from both clinical groups. These findings suggest that differences exist in TLR7- and TLR9-induced IFN-α production by PDCs in HIV-infected individuals that are not directly related to BDCA-2 down-modulation.

Main Content
Current View