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 Review Article Open Access

Integrins are heterodimeric transmembrane (TM) glycoproteins containing one each of α and β subunit, which are held

together by non-covalent forces. Integrin β2 (CD18) is the β subunit for four heterodimers: αDβ2, αXβ2, αMβ2 and αLβ2.

Integrin β2 family plays an essential role in leukocyte recruitment and activation during inflammation. Structurally, while

most part of the αβ dimer is extracellular, both the subunits traverse the plasma membrane and terminate as short cytoplasmic

domains. Each heterodimeric integrin exists on the cell surface mainly in an inactive (bent) form until they receive stimulating

signals  from other  receptors  (via  inside-out  signaling),  and  the  end result  of  integrin  activation  is  a  shift  in  integrin

conformation from a bent to an extended one. The binding of cytoplasmic proteins to α- and/or β-subunit carboxy-terminal

tails is an essential part of the activation process, as these interactions stabilize the extended integrin conformation and provide

connections to the cytoskeleton. The binding of extracellular ligand to the extended form of integrin (via outside-in signaling)

triggers a large variety of signal transduction events that modulate cell behaviors such as adhesion, proliferation, survival or

apoptosis, shape, polarity, motility, and differentiation, mostly through effects on the cytoskeleton. The receptors αMβ2

(Complement Receptor type 3, CR3) and αXβ2 (Complement Receptor type 4, CR4) are regarded to be the most important

mediators for complement-driven phagocytosis.
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PROTEIN FUNCTION

Inflammation which occurs due to infection or tissue injury,

controls a cascade of cellular and microvascular reactions that

allow the removal of pathogens or cell debris, and finally give

rise to wound healing, repair and homeostasis. The process of

the inflammation includes  recruitment  (migration)  of  free-

flowing immune cells such as polymorphonuclear neutrophils

(PMN) and monocytes/macrophages to the site of infection

(Simon  and  Green  2005;  Nourshargh  et  al.  2005).  The

essential steps during leukocyte recruitment includes tethering

and rolling, activation, firm adhesion, intraluminal crawling,

and extravasation.  Firm adhesion and crawling are  largely

mediated by β2-integrins  (Kolaczkowska and Kubes  2013,

Hajishengallis  and Chavakis 2013).  Signaling via  adhesion

molecules of the β2 integrin family plays an essential role for

immune cell recruitment and activation during inflammation.

An important  function  of  these  recruited  leukocytes  is  the

phagocytosis of complement opsonized particles mediated by

integrin  αMβ2  (Anderson  and  Springer  1987).  Therefore,

integrin β2-mediated leukocyte migration contributes crucially

to the performance of the immune defense system.

Integrin structure: Integrins are noncovalently associated αβ

heterodimeric cell surface glycoproteins. The known 18 α and

8 β subunits  in  humans generate  24 different  heterodimeric

receptors,  each  of  which  exhibits  distinct  ligand-binding

specificities and tissue distribution (Takada et al. 2007; Hynes

2002). Both the α and β subunits are type I membrane proteins

(single-pass transmembrane (TM) proteins, which have their N-

terminus exposed to the extracellular or luminal space), with a

large extracellular ligand-binding region (a.k.a ectodomain) and

generally  a  short  cytoplasmic  tail  that  binds  multiple

cytoskeletal  and adaptor/signaling proteins that  regulate the

affinity  of  integrin  for  extracellular  ligands  (Hynes  2002;

Suzuki  and  Naitoh  1990;  Anthis  and  Campbell  2011).  The

integrin  heterodimers  adopt  a  shape  that  resembles  a  large

“head” on two “legs,” with the head containing the sites for

ligand  binding  and  subunit  association  (Campbell  and

Humphries 2011). The extracellular region of the α subunit is

composed of a β- propeller fold with seven blades (W1-W7), a

Thigh  domain,  and  two  Calf  domains  (Calf-1  and  Calf-2)

(Xiong et al. 2001; Zhu et al. 2009; Xie et al. 2010). Further, an

I-(inserted or αA) domain (in β- propeller) is present in nine of

the α subunits (Lee et al. 1995). The extracellular region of the

β subunit is composed of a plexin-semaphorin-integrin (PSI)

domain,  an  I-like  (or  βA)  domain,  a  hybrid  domain,  four

integrin-epidermal growth factor (I-EGF1 to I-EGF4) folds and

a β tail domain (βTD) (Xiong et al. 2001; Zhu et al. 2009; Xie

et al. 2010; Tan et al. 2001; Shi et al. 2007; Shi et al. 2005; Zhu

et al. 2008). The I-like domain is inserted into hybrid domain,

which in turn is inserted into PSI domain. The two α-helical TM

domains of a resting integrin adopt a ridge-in-groove packing

(Zhu et al. 2009; Lau et al. 2009) and the association of the TM

domains  is  specific  (Vararattanavech  et  al.  2008).  The

cytoplasmic  tails  of  the  β  subunits  (other  than  β4  and  β8)

contain  one  or  two  highly  conserved  NxxY/F  motifs  (x

represents other amino acids) that can recognize a wide variety

of signaling and cytoskeletal proteins (e.g. adaptor molecules

such as ILK, DAB1, Dok-1 and FHL2) that connects integrins

to  the  actin  cytoskeleton  or  activate  a  range  of  signaling

pathways. In contrast,  apart from having a highly conserved

juxtamembrane GFFKR motif, α cytoplasmic tails are divergent

in their lengths and sequences.
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Integrin β2 family genes and selectivity: The human CD18

gene, a.k.a ITGB2, is located on chromosome 21q22.3 and

encodes a 95-kDa glycoprotein, Integrin β2 (Kishimoto et al.

1987).  The  human  CD11  genes  such  as  ITGAL,  ITGAM,

ITGAX and ITGAD are located on chromosome 16p11.2 and

encode  glycoproteins  αL  (CD11a,  180kDa),  αM  (CD11b,

160kDa), αX (CD11c, 150kDa) and αD (CD11d, 145 kDa),

respectively  (Tan  2012;  Fu  et  al.  2012;  Luo  et  al.  2007).

Integrin  β2,  exclusively  expressed  on  leukocytes,  forms

heterodimers  with  the  above  four  α  subunits  and  these

heterodimers  are  signal  transducer  receptors  involved  in

phagocytosis, degranulation and cell adhesions. Even though

β2 integrin is common to all these heterodimers, differences in

divergent α tails  confer structural  variations between these

integrins. For example, αLβ2 and αMβ2 integrins show distinct

chemokine-induced activation kinetics (Weber et al.  1999),

sites for the docking of specific cytosolic molecules such as

selective recruitment of the Src kinase Hck to αMβ2 but not

αLβ2 (Tang et  al.  2006),  and specific association of CD45

cytoplasmic  domain  with  αL  (Geng  et  al.  2005).  See

‘Interactions  with  Ligands  and Other  Proteins’  section  for

further  details.

Leukocyte migration/adhesion: The movement of leukocytes

from the bloodstream to the tissue occurs in several distinct

steps as explained above. The β2 integrin family of adhesion

molecules plays a central role in firm adhesion and subsequent

crawling on the endothelium, during which leukocytes seek an

appropriate site for diapedesis through endothelial junctions

(Grönholm  et  al.  2011;  Gahmberg  et  al.  1999).  See

‘Interactions  with  Ligands  and Other  Proteins’  section  for

further  details.

Phagocytosis:  Phagocytosis  is  a  physiological  process  by

which specialized cells (e.g. macrophages) recognize, bind and

internalize  materials  such  as  cell  debris,  microbes,

necrotic/apoptotic cells through the use of phagocytic receptors

such  as  Fcγ  receptors  (utilizes  membrane  pseudopods),

scavenger receptors (mediates binding to modified lipoprotein

particles) or integrins (utilizes membrane ruffle mechanism).

Integrin  activation  through  bidirectional  (inside-out  and

outside-in) signaling leads to the interaction between particle

and integrin which results  in  an actin-driven uptake of  the

particle.  Activated  integrins  link  actin  dynamics  to

extracellular components that involves cytoskeletal remodeling

and cell-shape changes during phagocytosis. However, integrin

signaling is also exploited by a variety of pathogens for entry

into host cells (Dupuy and Caron 2008). See ‘Interactions with

Ligands and Other Proteins’ section for further details.

REGULATION OF ACTIVITY

Integrins lack enzymatic (intrinsic) activity and the interactions

between the membrane proximal regions of α and β are crucial

for maintaining integrins in resting state (Chua et al. 2011).

Integrins  use  classical  bidirectional  (a.k.a  inside-out  and

outside-in)  signaling and non-classical  signaling processes

(integrin clustering and membrane ruffling) to integrate the

intracellular and extracellular environments (Lim and Hotchin

2012).  Inside-out  signaling refers  to intracellular  signaling

events that result in a higher-affinity state of the ectodomain of

integrin for its cognate ligands. Regulatory events that mediate

inside-out signaling converge on the cytoplasmic tails of the α

and β chains,  which transduce signals to their ectodomains

(Dustin et al.  2004).

Intracellular  signaling  pathways,  which  regulate  the

interactions of integrins with their ligands, affect a wide variety

of biological functions. Integrin activation is usually initiated by

integrin β subunit cytoplasmic tail (Calderwood et al.  1999)

through the recruitment of cytosolic proteins and many of these

interactions are modulated by tail phosphorylation (Gahmberg

et al. 2009; Fagerholm et al. 2004; Liu et al. 2000). Signaling

molecules  implicated  in  inside-out  signaling  through  αLβ2

include talin, Vav1, PKD1, several adaptor proteins (SLP-76,

ADAP, and SKAP-55), the Ras family GTPase Rap1, and two

of its effectors, RAPL and RIAM (Ménasché et al. 2007). Apart

from talin, kindlin-3 was shown to bind to, and activate Integrin

β2 and that a direct interaction of kindlin with the β subunit

cytoplasmic  tail  is  required,  but  not  sufficient,  for  integrin

activation (Moser et  al.  2009).  Integrin-linked kinase (ILK)

interacts with the cytoplasmic domains of integrin β2 (also β1

and  β3)  (Hannigan  et  al.  1997;  Hannigan  et  al.  1996;

Delcommenne et al. 1998) which acts as a proximal receptor

kinase  that  regulates  integrin-mediated  signal  transduction.

Spleen tyrosine kinase (Syk) is constitutively associated with

the  cytoplasmic  tail  of  β2  integrin  (Willeke  et  al.  2003;

Woodside et al. 2002). Syk is known to be phosphorylated and

activated upon β2 integrin mediated adhesion (Mócsai et al.

2002;  Willeke  et  al.  2003).  Syk  and  Zap-70  (Zeta-chain-

associated protein kinase) are non-receptor cytoplasmic tyrosine

kinases  with  two  Src  homology  (SH)2-  domains,  a  kinase

domain  and  two  interdomians  (A  and  B).  Syk  and  Zap-70

transmit signals from the immune receptors (B-Cell receptor

and T-Cell receptor), CD74, Fc Receptor and integrins (Mócsai

et al. 2002; Turner et al. 2000). The inside-out activation leads

to an increase in the binding affinity of integrin ectodomains for

their extracellular ligands (known as ‘outside-in’ activation)

(Calderwood et al. 1999; Tadokoro et al. 2003; Li et al. 2007;

Wegener et  al.  2007; Lim et  al.  2007; García-Alvarez et  al.

2003; Calderwood 2004). Outside-in signaling is analogous to

signaling  by  conventional  receptors  and  is  defined  as

stimulation of intracellular signaling pathways as a consequence

of ligation of αLβ2 with any of its extracellular ligands, such as

intracellular  adhesion  molecule  1  (ICAM-1).  Guanine

nucleotide  exchange  factors  Cytohesin-1  and  Cytohesin-3,

activated by PI(3,4,5)P3, bind β2 integrin which leads to an

increase  cell  adhesion  through  an  affinity-independent

processes,  such  as  integrin  clustering,  rather  than  integrin

activation (Calderwood 2004). Cytohesin-1 interacts with the

cytoplasmic domains of the integrin β-chain common to all β2

integrins such as αLβ2 and αMβ2 and regulates cell adhesion

(Geiger et al. 2000; Hyduk and Cybulsky 2011; El Azreq et al.

2011).

αMβ2 also mediates events (classified as non-classical) such as

integrin  clustering  and  membrane  ruffling  in  a  ligand

independent fashion in macrophages following treatment with

phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide

(LPS) (Patel and Harrison 2008; Williams and Ridley 2000).

The  bacterial  endotoxin  LPS  is  a  potent  stimulator  of

monocyte/macrophage  activation  and  induces  adhesion  of

monocytes while PMA is used in monocyte differentiation. The

integrin clustering (in phagocytic function) occurs through the

cytoplasmic  tails  which  is  different  from  the  extracellular

clustering  (promotes  differentiation  to  macrophage)  of

monocyte integrins. The association of Rack1 to integrin β2

(coimmunoprecipitated with αLβ2) in vivo (Liliental and Chang

1998)  requires  a  treatment  with  PMA which  promotes  cell

spreading and adhesion. These findings suggest that Rack1 may

link protein kinase C directly to integrin β2 and participate in

the regulation of integrin functions (Liliental and Chang 1998).
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Bacteria derived fMLP (N-formyl-Met-Leu-Phe, also known

as fMLF) induces chemotactic migration and it activates αMβ2

or αLβ2 in human neutrophils through vasodilator stimulated

protein (VASP) (Deevi et al. 2010) and cytohesin-1 (El Azreq

et al. 2011). Both VASP and cytohesin-1 function as ‘negative

regulators’ of inside-out function of αMβ2 (El Azreq et al.

2011). fMLP, activates Rap1 and inside-out signaling of β2

integrins  (Deevi  et  al.  2010),  triggers  phosphorylation  of

VASP on S239 and, thereby, controls membrane recruitment

of  C3G  (a  guanine  nucleotide  exchange  factor  for  Rap1),

which is required for activation of Rap1 and antibacterial (β2

integrin-dependent) functions of neutrophils.

INTERACTIONS

Integrins are heterodimeric (αβ) type I membrane receptors

which have their N-terminus exposed to the extracellular space

with a large extracellular ligand-binding region and a short

cytoplasmic tail  that binds multiple cytoskeletal  adaptor or

signaling  proteins  that  regulate  the  affinity  of  integrin  for

extracellular  ligands.  The  adhesion  of  integrins  to  the

extracellular matrix is regulated by binding of the cytoskeletal

protein talin to the cytoplasmic tail of the β-integrin subunit.

Activation is initiated by tail separation and propagation of

conformational  changes  to  the  outside  of  the  cell.  Rap1,  a

small GTPase, controls activation of integrin (αMβ2) in a talin-

dependent manner (Lim et al. 2010). Ligand interaction with

activated β2 integrins takes place via an inserted I-domain in

the α subunit (Shimaoka et al. 2003; Shimaoka et al. 2005).

Integrin αL I domains interact with β2 in the following orders

of affinity: ICAM-1 > ICAM-2 > ICAM-3 (Guermonprez et al.

2001).  Leukocyte  integrins  αLβ2,  αMβ2  and  αXβ2  act  as

collagen receptors and the α domains favor different collagen

subtypes and also differ in their requirements for activation

(Lahti et al. 2013).

αLβ2 (CD11a/CD18; Leucocyte Function-associated Antigen-

1, LFA-1): αLβ2, a leukocyte-restricted integrin, is essential

for  the  adhesion,  migration,  proliferation  of  leukocytes,

immune synapse formation, and NK cell cytotoxicity (Kinashi

2007; Smith et al. 2007; Bryceson et al. 2006; Bhunia et al.

2009). Ectopic expression of talin head domain induces αLβ2

activation possibly via association of talin head domain with

the membrane proximal NPXF motif in the β2 tail (Li et al.

2007; Kim et al. 2003). Another actin-binding protein -actinin

binds to the membrane proximal sequence of the β2 tail  of

αLβ2  (Pavalko  and  LaRoche  1993;  Stanley  et  al.  2008).

Interestingly, the binding of filamin to triplet Thr motif of the

β2  tail  has  an  inhibitory  effect  on  αLβ2-mediated  T  cell

adhesion  (Takala  et  al.  2008)  (Bhunia  et  al.  2009).  RAPL

(regulator  of  adhesion  and  cell  polarization  enriched  in

lymphoid  tissues)  associates  with  Rap1-GTP,  and  the

activating  effect  of  this  complex  on  αLβ2  requires  the

membrane  proximal  Lys1097  and  Lys1099  in  the  αL  tail

(Tohyama et al. 2003). Collectively, a multifaceted (positive

and  negative)  regulatory  network  of  molecules  at  the

cytoplasmic  face  of  the  αLβ2  allows  fine-tuning  of  αLβ2

activity in cells under different contexts such as physiological

conditions,  and  in  different  regions  of  a  polarized  and

migrating cell (Chua et al. 2013). Studies in mice have led to

identification of developmental endothelial locus-1 (Del-1) as

an endogenous antagonist of LFA-1 (Choi et al. 2008) and it

inhibits transmigration to inflamed tissues (Eskan et al. 2012).

Integrin  αLβ2  interacts  with  ICAM1-4.  ICAM-1  is  an

inducible  molecule  that  is  up-regulated  by  inflammatory

cytokines on endothelium, leukocytes, and multiple other cell

types,  whereas  ICAM-3  is  constitutively  expressed  on

leukocytes and absent from endothelium and most other cell

types under normal conditions (Springer 1990; Fawcett et al.

1992).  ICAM-1/αLβ2  interaction  is  essential  for  T-cell

activation as well as for migration of T-cells to target tissues

(Anderson  and  Siahaan  2003).  CD47,  also  called  Integrin

Associated Protein (IAP), has been demonstrated to associate

with  β2 integrins.  The interaction between Jurkat  T-cell  β2

integrins  and  CD47 were  detected  by  fluorescence  lifetime

imaging microscopy (Azcutia et  al.  2013) and that  CD47 is

necessary for induction of αLβ2 high affinity conformations that

bind to their ligand ICAM-1. ICAM-1, as a member of super-

IgG family,  consists  of five IgG-like domains (D1–D5) and

binds to αMβ2 via D3 domain (Diamond et al. 1991) and αLβ2

via D1 domain (Staunton et al. 1991), respectively. Cytohesin-1

interacts with the intracellular portion of the integrin β2 chain

(Kolanus  et  al.  1996).  Colocalization  of  CD82  antigen  or

Cytohesin-1 with αLβ2 at an adhesion foci results in enhanced

interaction between αLβ2 and ICAM-1 during T cell-T cell and

T cell-APC interactions (Shibagaki et al. 1999; Kolanus et al.

1996). Except αLβ2, all other β2 Integrins binds to Fibrin.

αMβ2  (CD11b/CD18;  Complement  Receptor  type  3,  CR3;

Macrophage-1 antigen,  Mac-1;  the iC3b receptor):  αMβ2, a

leukocyte  restricted  integrin,  mediates  leukocyte  migration,

adhesion, phagocytosis, degranulation and the maintenance of

immune tolerance.  The receptor αMβ2 is regarded to be the

most important mediator for complement-driven phagocytosis.

S i g n a l i n g  v i a  α M β 2  p r e d o m i n a n t l y  o c c u r ,  i n

polymorphonuclear neutrophils (PMN), upon ligand binding

and may have a unique role in neutrophil migration (Walzog et

al.  1996; Yan et al.  1997; Ross and Lambris 1982). Integrin

αMβ2 binds ligands such as intercellular adhesion molecule -1

(ICAM-1) on inflamed endothelial cells, the complement C3

(fragments such as iC3b), fibrinogen and fibrin, collagens and

coagulation factor X (Plow et al.  2000; Walzog et al.  1995).

Being expressed on phagocytes, it interacts with iC3b opsonized

pathogen (Bajic et al. 2013). Complement C3 deposition on the

bacterial  surface and αMβ2 on the macrophage surface play

important roles in the uptake of the highly virulent Francisella

tularensis  subsp.  Tularensis,  an  infectious  facultative

intracellular pathogen (Schulert and Allen 2006; Clemens et al.

2005; Clay et al.  2008).  Complement receptors,  particularly

αMβ2, have long been postulated to allow for safe passage for

intracellular pathogens (Wright and Silverstein 1983). There is

an  increasing  evidence  for  signaling  crosstalk  between

complement receptors and TLRs (Hajishengallis and Lambris

2010; Hajishengallis and Lambris 2011; Ivashkiv 2009). For

example, TLR2 is able to trans-activate αMβ2 through inside-

out  signaling  including  the  activation  of  Rac1,  PI3K  and

cytohesin-1 (Harokopakis  et  al.  2005;  Sendide et  al.  2005).

Integrin  β2  signaling  can  also  negatively  regulate  TLR

responses  (Ivashkiv  2009;  Wang  et  al.  2010).  Specifically,

αMβ2 can inhibit TLR4 signaling by promoting the degradation

of MyD88 and TRIF (Han et al. 2010).

Integrin  αMβ2's  function  is  dependent  on  the  activation  of

outside-in and inside-out two way signals (Abram and Lowell

2009). Signaling via αMβ2 plays an important role in regulating

production of interleukin-12 (IL-12), a key mediator of cell-

mediated  immunity  (Marth  and  Kelsall  1997).  In  addition,

engagement of αMβ2 has been shown to down-regulate IL-12

production (Marth and Kelsall 1997) and avoid initiation of the

oxidative  burst  in  macrophages  following  phagocytosis  of

apoptotic cells (Kim et al. 2005). Known key players during
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inside-out  activation  of  αMβ2  include  Rap1,  talin1  and

CamKII. CamKII phosphorylation of S756, allows Rap1 and

talin to be recruited to β2 and consequently activate αMβ2

(Lim et  al.  2011).  Ceramide,  a  constituent  of  atherogenic

lipoproteins,  binds  with  CD14  (membrane  anchored)  and

induces clustering of CD14 with co-receptors in lipid rafts

(Ceramide  recruits  αMβ2  and  CD36  to  the  proximity  of

CD14). CD14 lacks a transmembrane signaling domain and

signals through TLR4 or TLR2 and plays a major role in the

inflammatory response of monocytes to LPS (Pfieffer et al.

2001).

Integrin  αMβ2  is  a  known  ligand  of  RAGE  (Advanced

glycosylation end product-specific receptor) protein. RAGE

and αMβ2 have been shown by Ma et al. 2012 to interact with

C1q,  both  individually  (αMβ2/RAGE  and  RAGE/C1q

complexes)  and  together  as  a  complex  (αMβ2/RAGE/C1q

complex) (Ma et al. 2012). The outcome of C1q interaction

with these proteins, is enhanced phagocytosis. The tri-complex

of αMβ2/RAGE/C1q shows more efficient phagocytosis than

C1q/RAGE or RAGE/αMβ2. RIAM (Rap1-interacting adaptor

molecule), in contrast to the previous study (Lim et al. 2010),

regulates  the  recruitment  of  talin  (via  Rap1)  to  αMβ2  in

complement-mediated phagocytosis  in human myeloid cell

lines  (HL-60  and  THP-1)  and  macrophages  derived  from

primary monocytes (Lee et al. 2009; Medraño-Fernandez et al.

2013).

Integrin  αMβ2  interacts  with  fimbriae  of  Porphyromonas

gingivalis  (P.  gingivalis)  (Hajishengallis  et  al.  2007).  P.

gingivalis (Harokopakis et al. 2005) and Mycobacterium bovis

BCG (Sendide et al. 2005) can activate αMβ2 through inside-

out signaling via TLR2 to facilitate bacterial uptake. CyaA

(Bordetella pertussis) uses the αMβ2 as a cell receptor and

CyaA intoxication leads to increased intracellular cAMP level

and  cell  death  (Guermonprez  et  al.  2001).  RrgA  on

pneumococcal pilus 1 promotes nonopsonic αMβ2-dependent

uptake of S. pneumoniae by murine and human macrophages.

RrgA-αMβ2-mediated  phagocytosis  promotes  systemic

pneumococcal spread from local sites (Orrskog et al. 2012).

Complement iC3b covalently bound to the gonococcus serves

as a primary ligand for αMβ2 adherence. However, gonococcal

porin and pili also bound to the I-domain of αMβ2 in a non-

opsonic  manner.  αMβ2-mediated  endocytosis  serves  as  a

primary  mechanism  by  which  N.  gonorrhoeae  elicits

membrane ruffling and cellular invasion of primary, human,

cervical epithelial cells and this data suggest that gonococcal

adherence to αMβ2 occurs in a co-operative manner, which

requires  gonococcal  iC3b-opsonization,  porin  and  pilus

(Edwards et al. 2002; Jones et al. 2008). CD14 cooperates with

αMβ2  to  mediate  phagocytosis  of  Borrelia  burgdorferi.

Complement enhances phagocytosis of B. burgdorferi in a C3-

dependent manner (Hawley et al.  2013).  αM interacts with

leukocidin A/B (LukAB), which is produced by S. aureus upon

encountering neutrophils and is both necessary and sufficient

for  S.  aureus  to  kill  human  neutrophils,  macrophages  and

dendritic cells (DuMont et al. 2011, DuMont et al. 2013a). The

α subunit of the αMβ2 integrin acts as a cellular receptor for

LukAB (DuMont et al. 2013b).

αXβ2 (CD11c/CD18; p150,95; Complement Receptor type 4,

CR4): Integrin αXβ2 is a receptor for iC3b, C3dg, and C3d

fragments of complement C3 (Myones et al.  1988, Vik and

Fearon 1985; Chen et al. 2012; Micklem and Sim 1985) and

was shown to bind with apparently equal affinity (Vik and

Fearon  1985).  Integrin  αXβ2  also  shares  some  functional

properties with αMβ2 as an adhesion surface molecule. Both

αMβ2 (Wright and Jong 1986) and αXβ2 bind bacterial LPS

and  β-glucans  and  promote  phagocytosis  of  unopsonized

bacteria and yeast. A large number of intracellular proteins have

been found to  interact  with  the cytosolic  tails  (CTs)  of  this

integrin linking αXβ2 to the cytoskeleton (Chua et al. 2012).

αDβ2  (CD11d/CD18):  Integrin  αDβ2  is  a  multiligand

macrophage receptor with recognition specificity identical to

that of the major myeloid cell-specific integrin αMβ2. Integrin

αDβ2 is capable of supporting cell adhesion to various extra

cellular  matrix  (ECM)  proteins,  including  fibronectin,

vitronectin,  fibrinogen,  CCN1  (Cyr61)  and  others.  αDβ2,

selectively binds ICAM-3 and VCAM-1 and does not appear to

bind ICAM-1 (Van der Vieren et al. 1995; Van der Vieren et al.

1999; Grayson et al. 1998). The αD I-domain is responsible for

the binding function and that the mechanism whereby αD I-

domain  recognizes  its  ligands  is  similar  to  that  utilized  by

αMβ2.

CMAP, a complement database, documents the biochemical

methods used to identify these interactions (Yang et al. 2013).

PHENOTYPES

Leukocyte emigration, from the bloodstream to tissue to sites of

inflammation, is a dynamic process and involve multiple steps

in  an  adhesion  cascade.  Various  adhesion  molecules  are

expressed on both resting and stimulated endothelial cells and

leukocytes (Nagendran et al. 2012; Muller 2003). Leukocyte

adhesion and tethering defects involve β2 integrins and selectin

ligands  (Bunting  et  al.  2002).  Selectins  are  found  on  both

leukocytes and endothelial cells and primarily mediate cellular

margination and rolling. Defects in a number of these adhesion

molecules  result  in  recognized  clinical  syndromes  called

Leukocyte  Adhesion Deficiency (LAD) syndrome in  which

leukocytes  (particularly  neutrophils)  cannot  leave  the

vasculature to migrate normally into tissues under conditions of

inflammation or infection. Affected individuals display blood

neutrophilia, suffer from recurrent infections, and invariably

develop agressive periodontitis  leading to premature loss of

primary and permanent teeth (Bowen et al. 1982; Anderson and

Springer 1987; Arnaout 1990; Shaw et al. 2001; Wright et al.

1995; Etzioni 1999).

LAD I, in which the β2-integrin family is deficient or defective.

LAD II,  in  which  the  fucosylated  carbohydrate  ligands  for

selectins  are  absent.

LAD III, in which the activation of β integrins (β1, β2, and β3)

are defective (Karaköse et al. 2010; Plow et al. 2009; Jurk et al.

2010). LAD III is mainly due to mutations in fermitin family

member 3 (FERMT3, aka KIND3). All LAD III patients have

premature stop codons or nonsense mutations in both alleles of

their FERMT3 gene (Malinin et al. 2009; Manevich-Mendelson

et al. 2009; Kuijpers et al. 2009; Svensson et al. 2009; Kuijpers

et  al.  1997).  Kindlin-3  is  a  cytoplasmic  protein  that  acts

cooperatively with talin-1 in activating β1, β2, and β3 integrins.

LAD III is characterized by bleeding disorders and defective

recruitment of leukocytes into sites of infection.

MAJOR SITES OF EXPRESSION

αLβ2 (CD11a/CD18, LFA-1): Integrin αLβ2 is the only integrin

expressed on all leukocyte lineages.

αMβ2  (CD11b/CD18,  CR3;  Mac-1) :  Expressed  on
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polymorphonuclear  leukocytes  (mainly,  neutrophils),

mononuclear  phagocytes  (dendritic  cells,  monocytes  and

macrophages), lymphocytes (mainly, natural killer (NK) and

γδ T-cells) and microglia.

αXβ2  (CD11c/CD18,  CR4):  Expressed  on  mononuclear

phagocytes  (dendritic  cells,  monocytes  and  macrophages),

polymorphonuclear leukocytes (mainly, neutrophils), activated

B lymphocytes and natural killer (NK) cells.

αDβ2  (CD11d/CD18):  Expressed  on  macrophages  and

eosinophils.

SPLICE VARIANTS

Integrin β2 is a 95-kDa glycoprotein, encoded by the ITGB2

gene and is located on chromosome 21q22.3 (Kishimoto et al.

1987). Human ITGB2 spans approximately 40 kb of DNA and

contains  16  exons  (Weitzman et  al.  1991).  Two transcript

variants  encoding  the  same protein  have  been  identified.

REGULATION OF CONCENTRATION

The expression of the leukocyte integrins is cell-specific and is

coordinately regulated during leukocyte differentiation through

transcriptional and post-transcriptional mechanisms (Miller et

al. 1986; Noti et al. 2001; Noti and Reinemann 1995; Back et

al. 1992). The promoters for the CD11a-d (Pahl et al. 1992;

Nueda et al. 1993; López-Rodríguez et al. 1995; Cornwell et

al. 1993; Noti et al. 1992; López-Cabrera et al. 1993; Agura et

al.  1992; Hickstein et al.  1992) and CD18 (Rosmarin et al.

1992; Agura et al. 1992) genes lack classical TATA boxes but

instead appear to be controlled by initiator elements positioned

within 100 bp of  their  ATG translational  start  codons.  Cis

elements are found within 500 bp upstream of the ATG site,

some of which control cell-specific expression.

ANTIBODIES

Monoclonal antibodies (mAbs) directed against the CD18 (β2):

blocking IB4 (Bednar et al. 1996) and an activating KIM-127.

KIM127 is a widely used mAb that recognizes a β2 subunit

epitope (on epidermal growth factor (EGF)-like domain 2) that

is cryptic on bent αLβ2, but exposed when the integrin extends

(Beglova et al. 2002; Kamata et al. 2002; Chen et al. 2010).

Efalizumab is a monoclonal antibody, which is specific for

αLβ2 to  treat  psoriasis.  Anti-integrin  β2  mAb MEM-48 is

available  from Sigma.
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Table 1: Functional States

STATE DESCRIPTION LOCATION REFERENCES
β2 (CD18) plasma membrane
β2/DAB1 integrin complex Calderwood DA et al. 2003

β2/FHL2 integrin complex Wixler V et al. 2000

β2/DOK1 integrin complex Calderwood DA et al. 2003

β2/PKC integrin complex Fagerholm S et al. 2002

β2/ILK integrin complex Hannigan GE et al. 1997; Delcommenne M et al. 1998

β2/(Syk|Zap-70) integrin complex Willeke T et al. 2003; Woodside DG et al. 2002; Miura Y et al. 2000

β2/Hsp40 (F. tularensis) integrin complex Dyer MD et al.

αDβ2 (CD11d/CD18) alphaD-beta2 integrin complex Van der Vieren M et al. 1995

αDβ2/VCAM-1 alphaD-beta2 integrin complex Grayson MH et al. 1998; Van der Vieren M et al. 1999

αDβ2/ICAM-3 alphaD-beta2 integrin complex Van der Vieren M et al. 1995

αDβ2/Fibrinogen alphaD-beta2 integrin complex Yakubenko VP et al. 2006

αMβ2 (CR3; CD18/11b) alphaM-beta2 integrin complex Arnaout MA et al. 1988; Sándor N et al. 2013

αMβ2/CD14 alphaM-beta2 integrin complex Pfeiffer A et al. 2001; Ross GD et al. ; Zarewych DM et al. 1996

αMβ2/CD23 alphaM-beta2 integrin complex Ross GD et al. ; Lecoanet-Henchoz S et al. 1995

αMβ2/CD59 alphaM-beta2 integrin complex Ross GD et al.

αMβ2/Collagen alphaM-beta2 integrin complex Ross GD et al.

αMβ2/Fibrinogen alphaM-beta2 integrin complex Diamond MS et al. 1993; Ross GD et al.

αMβ2/ELANE alphaM-beta2 integrin complex Cai TQ and Wright SD 1996

αMβ2/Heparan sulfate alphaM-beta2 integrin complex Ross GD et al.

αMβ2/fH alphaM-beta2 integrin complex DiScipio RG et al. 1998; Ross GD et al.

αMβ2/FX alphaM-beta2 integrin complex Altieri DC and Edgington TS 1988; Ross GD et al.

αMβ2/β-glucan alphaM-beta2 integrin complex Ross GD et al.

αMβ2/LN-8 alphaM-beta2 integrin complex Wondimu Z et al. 2004

αMβ2/GPIbα alphaM-beta2 integrin complex Josefsson EC et al. 2005

αMβ2/uPAR-GPI alphaM-beta2 integrin complex Pliyev BK et al. 2010; Ross GD et al. ; Xue W et al. 1994

αMβ2/uPAR-GPI/uPA alphaM-beta2 integrin complex
αMβ2/FcγRIIa (CR3/CD32) alphaM-beta2 integrin complex Annenkov A et al. 1996; Ross GD et al.

αMβ2/FcγRIIIB (CR3/CD16) alphaM-beta2 integrin complex Ross GD et al. ; Preynat-Seauve O et al. 2004; Sehgal G et al. 1993;
Zhou M et al. 1993

αMβ2/HP alphaM-beta2 integrin complex El-Ghmati SM et al. 2002

αMβ2/PR-3 alphaM-beta2 integrin complex David A et al. 2003

αMβ2/iC3b alphaM-beta2 integrin complex Gordon DL et al. 1987

αMβ2/ICAM[1,2,4] alphaM-beta2 integrin complex Diamond MS et al. 1990; Hermand P et al. 2000; Ross GD et al.

αMβ2/Talin-1 alphaM-beta2 integrin complex Lim J et al. 2007

αMβ2/Kindlin-3 alphaM-beta2 integrin complex
αMβ2/FUT4 (CR3/CD15) alphaM-beta2 integrin complex Skubitz KM and Snook RW 1987

αMβ2/RAGE alphaM-beta2 integrin complex Ma W et al.

αMβ2/RAGE/C1q alphaM-beta2 integrin complex Ma W et al.

αMβ2/CYR61(CCN1) alphaM-beta2 integrin complex Schober JM et al. 2002; Schober JM et al. 2003

αMβ2/CCN2 alphaM-beta2 integrin complex Schober JM et al. 2002

αMβ2/MPO alphaM-beta2 integrin complex El Kebir D et al. 2008; Johansson MW et al. 1997; Lau D et al. 2005

αMβ2/PLG alphaM-beta2 integrin complex Lishko VK et al. 2004

αMβ2/CyaA (B.pertussis) alphaM-beta2 integrin complex Guermonprez P et al. 2001

αMβ2/App1 (C. neoformans) alphaM-beta2 integrin complex Stano P et al. 2009

αMβ2/RrgA (S. pneumoniae) alphaM-beta2 integrin complex Orrskog S et al.

αMβ2/LPS (E.coli) alphaM-beta2 integrin complex Van Strijp JA et al. 1993; Ross GD et al. ; Wright SD and Jong MT
1986

αXβ2 (CR4, CD11c/18) alphaX-beta2 integrin complex Shelley CS et al. 2002; Lecoanet-Henchoz S et al. 1995

αXβ2/CD23 alphaX-beta2 integrin complex Lecoanet-Henchoz S et al. 1995

αXβ2/FUT4 (CR4/CD15) alphaX-beta2 integrin complex Skubitz KM and Snook RW 1987

αXβ2/Fibrinogen alphaX-beta2 integrin complex
αXβ2/iC3b alphaX-beta2 integrin complex Micklem KJ and Sim RB 1985; Chen X et al. 2012

αXβ2/ICAM-1 alphaX-beta2 integrin complex
αXβ2/LPS (E. coli) alphaX-beta2 integrin complex Ingalls RR and Golenbock DT 1995

αLβ2 (LFA-1, CD11a/18) alphaL-beta2 integrin complex
αLβ2/CD45 alphaL-beta2 integrin complex Geng X et al. 2005

αLβ2/CD47 alphaL-beta2 integrin complex Azcutia V et al. 2013
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αLβ2/CD82 alphaL-beta2 integrin complex Shibagaki N et al. 1999

αLβ2/Cytohesin-1 alphaL-beta2 integrin complex Kolanus W et al. 1996; Geiger C et al. 2000

αLβ2/ICAM[1-4] alphaL-beta2 integrin complex Edwards CP et al. 1998; Hermand P et al. 2000; Huang C and Springer
TA 1995; Li N et al. 2013; Mizuno T et al. 1997; Shimaoka M et al.
2001

αLβ2/RanBPM alphaL-beta2 integrin complex Denti S et al. 2004

αLβ2/DNAM-1 alphaL-beta2 integrin complex Shibuya K et al. 1999

αLβ2/JAB1 alphaL-beta2 integrin complex Bianchi E et al. 2000; Kinoshita SM et al.

αLβ2/FUT4 alphaL-beta2 integrin complex Skubitz KM and Snook RW 1987

αLβ2/ESM-1 alphaL-beta2 integrin complex Béchard D et al. 2001

αLβ2/Rack1 alphaL-beta2 integrin complex Liliental J and Chang DD 1998

αLβ2/VacA (H. pylori) alphaL-beta2 integrin complex Cover TL et al. 2008; Sewald X et al. 2008
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