Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Gauging Dynamics-driven Allostery Using a New Computational Tool: A CAP Case Study.

Abstract

In this study, we utilize Protein Residue Networks (PRNs), constructed using Local Spatial Pattern (LSP) alignment, to explore the dynamic behavior of Catabolite Activator Protein (CAP) upon the sequential binding of cAMP. We employed the Degree Centrality of these PRNs to investigate protein dynamics on a sub-nanosecond time scale, hypothesizing that it would reflect changes in CAPs entropy related to its thermal motions. We show that the binding of the first cAMP led to an increase in stability in the Cyclic-Nucleotide Binding Domain A (CNBD-A) and destabilization in CNBD-B, agreeing with previous reports explaining the negative cooperativity of cAMP binding in terms of an entropy-driven allostery. LSP-based PRNs also allow for the study of Betweenness Centrality, another graph-theoretical characteristic of PRNs, providing insights into global residue connectivity within CAP. Using this approach, we were able to correctly identify amino acids that were shown to be critical in mediating allosteric interactions in CAP. The agreement between our studies and previous experimental reports validates our method, particularly with respect to the reliability of Degree Centrality as a proxy for entropy related to protein thermal dynamics. Because LSP-based PRNs can be easily extended to include dynamics of small organic molecules, polynucleotides, or other allosteric proteins, the methods presented here mark a significant advancement in the field, positioning them as vital tools for a fast, cost-effective, and accurate analysis of entropy-driven allostery and identification of allosteric hotspots.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View