Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Screening p-hackers: Dissemination noise as bait.

Abstract

We show that adding noise before publishing data effectively screens [Formula: see text]-hacked findings: spurious explanations produced by fitting many statistical models (data mining). Noise creates baits that affect two types of researchers differently. Uninformed [Formula: see text]-hackers, who are fully ignorant of the true mechanism and engage in data mining, often fall for baits. Informed researchers, who start with an ex ante hypothesis, are minimally affected. We show that as the number of observations grows large, dissemination noise asymptotically achieves optimal screening. In a tractable special case where the informed researchers theory can identify the true causal mechanism with very few data, we characterize the optimal level of dissemination noise and highlight the relevant trade-offs. Dissemination noise is a tool that statistical agencies currently use to protect privacy. We argue this existing practice can be repurposed to screen [Formula: see text]-hackers and thus improve research credibility.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View