Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules

Abstract

Materials such as graphene and topological insulators host massless Dirac fermions that enable the study of relativistic quantum phenomena. Single quantum dots and coupled quantum dots formed with massless Dirac fermions can be viewed as artificial relativistic atoms and molecules, respectively. Such structures offer a unique testbed to study atomic and molecular physics in the ultrarelativistic regime (particle speed close to the speed of light). Here we use a scanning tunnelling microscope to create and probe single and coupled electrostatically defined graphene quantum dots to unravel the magnetic-field responses of artificial relativistic nanostructures. We observe a giant orbital Zeeman splitting and orbital magnetic moment up to ~70 meV T-1 and ~600μBB, Bohr magneton) in single graphene quantum dots. For coupled graphene quantum dots, Aharonov-Bohm oscillations and a strong Van Vleck paramagnetic shift of ~20 meV T-2 are observed. Our findings provide fundamental insights into relativistic quantum dot states, which can be potentially leveraged for use in quantum information science.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View