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Thermohaline mixing in the small-Péclet number
approximation.

Nadège Lagarde
in collaboration with François Lignières, and Jean-PaulZahn

ISIMA 2010
- The International Summer Institute for Modeling in Astrophysics -

Abstract : Thermohaline mixing is the mechanism that governs the photospheric
compostion of low- and intermediate-mass stars, and explain observations in these
stars. It is important to study this instability with the hydrodynamic theory, and to
derive prescriptions for the turbulent mixing that can be implemented in stellar codes.
In this project, we discuss the formation of salt fingers on stable state, for different per-
turbations, when we use the small Péclet number approximation. The dominant mode
of thermohaline mixing is different from the most unstable mode.

1 Introduction

Thermohaline mixing is well known in Oceans on Earth. In fact, the term thermo-
haline mixing refers to the part of the large-scale ocean circulation that is driven by
global density gradients created by surface heat and cold water fluxes. The adjective
thermohaline derives from thermo- referring to temperature and -haline referring to salt
content, factors which together determine the density of sea water. In the polar regions
(Arctic Ocean and Weddell Sea in particular), sea water turns into ice. Upon solidi-
fying, the salts are rejected because the ice does not integrate them into its structure:
liquid water is enriched in salts and the density increases,which begins a dive to the
seabed and, eventually, large scale convection. So, this mixing is a double diffusive
instability with two components : one stabilizing (temperature) diffuses faster than the
other (Salt) whose stratification is unstable.

This instability has been already discussed in the literature : the first discussion by
Stern (1960) ; Ulrich (1972) was the first to derive a prescription for this mehcanism
; Schmitt (1979) ; Kippenhahn et al. (1980) extended the Ulrich’s prescription for the
non-perfect gas, and Denissenkov (2010). In addition, in the laboratory, the instability
takes the form of salt fingers (Krishnamurti 2003). Recently, thermohaline mixing has
been identified as the mechanism that governs the photospheric composition of low-
and intermediate mass stars (Charbonnel & Zahn 2007). In such stars, this double
diffusive instability is induced by the inversion of mean molecular weight, created by
the reaction3He(3He,2p)4He on the external wing of the hydrgen burning shell. In
fact, this mixing can explain observed abundances in the redgiant stars (Charbonnel &
Lagarde 2010).

In addition, this instability appears in various other astrophysical situations, for
instance when4He or C-rich material is deposited at the surface of a star in a mass
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transferring binary (Stothers & Simon 1969; Stancliffe et al. 2007), and when a star
accretes heavy elements during planet formation (Vauclair2004).

So it is very important to study this instability with the hydrodynamic theory, and to
derive prescriptions for the turbulent mixing that can be implemented in stellar codes.
As compared to oceans, a specificity of stellar fluid is its very high thermal diffusivity.
This introduces scale separation effects that are difficulthandle in numerical simula-
tions. Here, we shall use the small-Pclet-approximation ofthe Boussinesq equations
(Lignires 1999) that avoids this numerical difficulty but still enables to study the dy-
namics of an highly thermally diffusive atmosphere and in particular the thermohaline
convection.

2 Equations for thermohaline instabilty with in small-
Péclet number approximation

2.1 Boussinesq Equations with small-Ṕeclet

We consider the Boussinesq equations for thermohaline instability :

∂~u
∂ t

+~u.∇~u = −∇p−
ρ ′

ρ
g~ez + ν∇2~u (1)

∂θ
∂ t

+~u.∇θ = KT ∇2θ (2)

∂ µ
∂ t

+~u.∇µ = Kµ∇2µ (3)

~∇.~u = 0 (4)

where,~u = u~ex +v~ey +w~ez is the velocity vector, p the pressure,θ the temperature,
andµ the mean molecular weight. The z axis refers to the vertical direction, while x and
y axis are the horizontal directions.KT andKµ correspond to the thermal and haline
diffusivity respectively. The vertical velocity, temperature and salinity perturbations
are of the formeλ tsin(mπz)ei(kx+ly), whereλ is the growth rate. We note the wave
numbera2 = k2+ l2+m2π2, anda2

h = k2+ l2 the horizontal wave number. We consider
the linear case,~u.∇~u = 0.

In stars, the thermal diffusivity largely exceeds the viscosity and the haline dif-
fusivity. So with the expression of Péclet number given by (Lignières 1999) and his
discussion, we can take small Péclet number in stellar radiative zones. In addition, the
equation of state isρ

′

ρ = −αθ +σ µ , whereα = 1
T is the coefficient of thermal expan-

sion in stars, andσ = 1
µ the coefficient of haline contraction in stars. In the context

of Boussinesq approximation, with the small-Péclet number approximation and using
this equation of state, we obtain the following equations for thermohaline mixing.

(λ −ν∇2)∇2w = g(α∇2
hθ −σ∇2

hµ) (5)

KT ∇2θ = −βT w (6)

(λ −Kµ∇2)µ = −βµw (7)
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whereβT =−
∂T
∂ z andβµ = ∂ µ

∂ z are thermal and salinity gradients respectively. Sub-
stituting equations (6) and (7) in (5) gives the following quadratic equation forλ :

λ 2 + Bλ +C = 0 (8)

with

B =
â2ν
L2

[

1+
Kµ

ν
+

â2
h

â6 RaT

]

(9)

and

C =
â4νKµ

L4

[

1+
â2

h

â6

(

RaT −Raµ
)

]

(10)

where the wavenumbers have been non-dimensionalized

â = aL âh = ahL (11)

and where we have introduced the thermal and haline Rayleighnumbers

RaT = −
gαβT L4

νKT
Raµ =

gσβµL4

νKµ
. (12)

2.2 Study of stability

ForC < 0 the discriminant∆ = B2
−4C is positive, thus the quadratic equation has two

real roots, of which one is positive, leading to exponentialgrowth. This root vanishes
for C = 0, namely when

Raµ −RaT =
â6

â2
h

. (13)

The minimum of(Raµ −RaT ) is obtained for ˆa2
h = m2π2/2, which yields the instability

condition at small Péclet number :

Raµ −RaT >
27
4

π4. (14)

One retrieves the familiar condition for thermal convection when one ignoresRaµ and
changes the sign ofRaT (since thenβT < 0).

3 2D Simulations in the non-linear regime : the domi-
nant mode

In order to explore the non-linear regime, and know the dominant mode of the thermo-
haline instability, we use the code Balaitous. It is a 3D codethat uses a pseudo-spectral
Fourier method in the horizontal directions and compact finite differences in the verti-
cal. We compute two dimensions simulations, with 101x128 grid points. The vertical
extend of the domain isL and the horizontal one is 2πL. In the horizontal direction
the boundary conditions are periodic. At the bottom and top surfaces, the velocity
satisfies stress-free impenetrable boundary conditions while the perturbations of mean
molecular weight and temperature vanish there.

The initial conditions are inspired from the solution of thelinear equations (5)- (7)
; for the velocity components ( ˆw andû), and the mean molecular weight (µ̂). We take
respectively :
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ŵ = ŵ0sin(mπ ẑ)cos(âhx̂) (15)

û = −
m

2âh
ŵ0 cos(mπ ẑ)sin(âhx̂) (16)

µ̂ =
−Kµ

νRaT

ŵ0 (17)

where ˆah is an integer.
We takeRaT = 100 andRaµ = 1000. In these conditions, we find the most unstable

mode for linear growth rateah = 3.92. In order to determine the dominant mode of
thermohaline instability, we compute simulations with twoperturbations which have
two different horizontal wave numbers, and the same initialamplitude.

In table 1, we show the different models computed, with different horizontal wave
numbers.

3.1 ah = 4 and 2

Figure 1 shows the vertical velocity atx = π
4 as a function of time, for model computed

with initial wavenumbersah = 4 andah = 2. The system tends towards a stable solution
whent = 30. Figure 2 represents the mean molecular weight in grey, when the system
is stable. The system tends directly towards a stable solution with the formation of two
salt fingers. This fingers take the form of mushroom.

Figure 1: The vertical component of velocity as a function oftime, for model with
initial wavenumbersah = 4, ah = 2.

3.2 ah = 4 and 5

Figure 3 shows the vertical velocity atx = π
4 as a function of time, for model with initial

wavenumbersah = 4 andah = 5. The system tends towards an intermediate solution
whent = 20, and after a stable solution whent > 200.

Figure 4 represents the mean molecular weight in grey, when the system is in inter-
mediate state (left panel) with four saltfingers, and stablestate (right panel) with only
two saltfingers.
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Figure 2: Salinity (in grey) at t=225, for model with initialwavenumbersah = 4,ah = 2.

Figure 3: The vertical component of velocity as a function oftime, for model with
initial wavenumbersah = 4, ah = 5.

3.3 ah = 5 and 9

Figure 5 shows the vertical velocity atx = π
4 as a function of time. The system, as for

previous model, tends towards an intermediate solution (t=20), and then into a stable
solution (t ¿150). Figure 6 represents the mean molecular weight in grey, when the
system is in intermediate state, and stable state respectively. The system forms five salt
fingers on the intermediate state, and then three on stable solution.
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Figure 4: Salinity (in grey) at t=90s (left) and at t=225 (right), for model with initial
wavenumbersah = 4, ah = 5.

Figure 5: The vertical component of velocity as a function oftime, for model with
ah = 5 ah = 9.

4 Conclusions and future work

We applied the small-Péclet number approximation to the equations of thermohaline
mixing. In these conditions, we have obtained a condition ofthermohaline instablity,
linked directly with the thermal and haline Rayleigh numbers. Then we have computed
nine models with two perturbations which have two differenthorizontal wave numbers,
in order to determine the dominant mode. We have shown that the dominant mode is
different from the most unstable mode.
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Figure 6: Salinity (in grey) at t=90s (left) and at t=225 (right), for model withah = 4
ah = 5.

For all our models, the system tends towards a stable solution with two or three
salt fingers. In addition, the table 1 shows two different evolutions. First, when the
horizontal wave number is lower than the most unstable mode,the system tends directly
to the stable mode. Second, when the horizontal wave number is higher than the most
unstable mode, the system evolves to an intermediate state,and then to the final stable
state.

The dominant mode of thermohaline mixing, in these conditions, is different from
the most unstable mode.

In addition, we can study the aspect ratio of salt fingers. It is defined as the ratio
between the length and width of fingers. In our conditions of computation, we obtain
an aspect ratio equal to the normalized horizontal wavenumber. And we have seen that
ah is always superior to 1. In fact, the efficiency of mixing depends sensitively on this
aspect ratio. The diffusive coefficient is given with the equation 18, whereα is the
aspect ratio of salt fingers, according to Ulrich (1972) :

Dt =
8
3

π2α2K(
φ
δ

)
−∇µ

(∇ad −∇)
(18)

In future work, we must computed other simulations with different parameters in
order to understand the effects on aspect ratio of salt fingers, and thus on the efficiency
of thermohaline mixing, with two and three dimensions simulations
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Models ah intermediate state stable state

M1 2 4 - 2
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Table 1: Models computed with two different initial horizontal wave numbers (given
in second column). The third and fourth columns give the number of saltfingers in the
computational domain
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