Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Mitochondrial Calcium Uniporter (MCU) deficiency reveals an alternate path for Ca2+ uptake in photoreceptor mitochondria.

Abstract

Rods and cones use intracellular Ca2+ to regulate many functions, including phototransduction and neurotransmission. The Mitochondrial Calcium Uniporter (MCU) complex is thought to be the primary pathway for Ca2+ entry into mitochondria in eukaryotes. We investigate the hypothesis that mitochondrial Ca2+ uptake via MCU influences phototransduction and energy metabolism in photoreceptors using a mcu-/- zebrafish and a rod photoreceptor-specific Mcu-/- mouse. Using genetically encoded Ca2+ sensors to directly examine Ca2+ uptake in zebrafish cone mitochondria, we found that loss of MCU reduces but does not eliminate mitochondrial Ca2+ uptake. Loss of MCU does not lead to photoreceptor degeneration, mildly affects mitochondrial metabolism, and does not alter physiological responses to light, even in the absence of the Na+/Ca2+, K+ exchanger. Our results reveal that MCU is dispensable for vertebrate photoreceptor function, consistent with its low expression and the presence of an alternative pathway for Ca2+ uptake into photoreceptor mitochondria.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View