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Abstract

Common repeated measures random effects models contain two ran-
dom components, a random person effect and time-varying errors. An
observation can be an outlier due to either an extreme person effect or
an extreme time varying error. Outlier statistics are presented that can
distinguish between these types of outliers. For each person there is one
statistic per observation, plus one statistic per random effect. Method-
ology 1s developed to reduce the explosion of statistics to two summary
outlier statistics per person; one for the random effects and one for the
time varying errors. If either of these screening statistics are large, then in-
dividual statistics for each observation or random effect can be inspected.
Multivariate, targeted outlier statistics and goodness-of-fit tests are also
developed. Distribution theory is given, along with some geometric intu-
ition.

Key Words: Bayesian Data Analysis, Goodness-of-Fit, Hierarchical Models,

Observed Errors, Repeated Measures.

1 Introduction.

Residual analysis in various forms is perhaps the only method for internally
checking a particular model-data combination for lack of fit. Residual analysis

can provide clues to useful and needed model elaboration but is only beginning
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to be developed for Bayesian hierarchical models. Some recent work on residual
and outlier analysis is Albert and Chib (1993a, 1993b, 1994), Chaloner (1994),
and Weiss and Lazaro (1992) and Weiss (1994b). Here I define a residual as an
unobserved random error; a residual estimate is a point estimate of the unob-
served random error; usually the estimate is suitable for plotting. In contrast,
an outlier may be a particular observation whose unobserved error is far from
the expected value (an extreme observation), or it may be a case that does not
belong to the population under study, regardless of whether 1t is an extreme ob-
servation. In this paper, I use the first definition of outlier and define an outlier
statistic as a measure of how outlying a particular unobserved error is. Plots of
repeated measures data and residuals often lead to the informal identification of
certain cases as outliers (Weiss and Lazaro 1992; Weiss 1994b). Tt is desirable
to have formal methods for identifying outliers as well.

This paper develops a Bayesian approach to residual and outlier statistics for
the random effects model, a common model often used to analyze continuous
repeated measures data. This paper extends the approach of Chaloner and
Brant (1988) and Chaloner (1991, 1994) to the general hierarchical model, with
primary application to random effects models (REM) for repeated measures
(RM) data. The essential idea is to have residual estimates for plotting and
informal identification of outliers and outlier statistics for formal identification
and labeling of outliers.

Chaloner and Brant (1988) and Chaloner (1991) developed Bayesian outlier
statistics for the linear model and for models with censored data based on the
posterior distribution of the unobserved error terms. The residual estimates are
posterior means of unknown random errors. For the linear model Y = X3 + ¢,
where Y is an n-vector of observations, X is an n x p matrix of predictors,
usually with an initial column of ones; [ is a p vector of unknown regression
coefficients, and ¢ ~ N(0,02I). Elements of Y, X, and € corresponding to a
single case are denoted by y;, !, 1 x p and ¢; respectively; all are from the 7*®
row of the respective vector or matrix. The posterior probability that ¢; is large,
O(i, k) for a fixed constant k is defined as

O(i, k) = P(le;] > ko)|Y).

This is the posterior probability that the unobserved residual 1s more than k&
standard deviations from its prior mean of zero. This is called a Posterior Outlier
Statistic (POS); in the sequel POS is also used generically to identify a statistic
similar to O(4, k). The constant & may be chosen to be a familiar number such

as 2 or 3. Alternately it can be chosen so the prior expected number of outliers is



a small constant «. For example, for « = .05, choose k& = <I>_1(0.5—|—.5(0.95)1/”),
where ®(a) is the standard normal cumulative distribution function, and n is
the sample size (Chaloner and Brant 1988, Chaloner 1994). Albert and Chib
(1993a, 1993b, 1994b) have considered the use of these measures in binary data
models and in time series models.

Section 2 presents the normal theory repeated measures random effects
model and gives a short review of residuals and outlier detection for this model.
Section 3 gives general distribution theory and some geometric intuition about
residual summaries. Section 4 develops basic outlier statistics for these models
and section 5 develops several alternative special purpose outlier statistics not
previously seen in either Bayesian or frequentist examples. Section 6 gives two

examples, and the paper closes with discussion.

2 The Repeated Measures Random Effects Model

2.1 The Model and Notation
The basic RM REM is

i = Xia+Zifi+e
Bi ~ N(0,0°D), (1)
¢ ~ N(0,071),

for i = 1,..n; where Y; = (yi1,...,¥in,)" is the n; by 1 vector of repeated
measurements on subject i taken at times ¢; = (¢;1,...,%n,)"; X, n; by p, and
Zi, n; by q are fixed vectors of covariates; « is a p by 1 parameter vector of fixed
effects, B; 1s a ¢ by 1 parameter vector of random effects with prior mean 0 and
prior covariance matrix ¢?D, and o2 is the sampling variance. Very commonly,
Z; has columns which are polynomials in ¢;, ¢ < p, and X; has a sub matrix
of ¢ columns equal to Z;. The entire vector Y; will be referred to as a subject,
while individual elements y;; will be called an observation. The total number
of observations is N = Y n;. The prior considered here is a flat prior except
possibly for D with p(D, 0%, a) o p(D) which leads to a proper posterior if p(D)
is proper. The particular choice of prior does not really matter for the material
presented here. Additional notation will be useful; let xﬁj be the j*™ row of X;,
zfj be the j*" row of Z;.

The marginal distribution of Y; for model 1 is

Yiloyo, D ~ N(X;e, Vi) (2)



where

Vi=o*(I+ Z;DZ})

The Gibbs sampler (Gelfand, Hills, Racine-Poon, and Smith 1990, Zeger
and Karim 1991) permits straightforward Markov Chain Monte Carlo sampling
from the posterior of the parameters (#) given the data. The discussion about
computation assumes that samples 0), ¢ = 1..L of some kind are available from

the posterior of the parameters.

2.2 Review of Residuals and Outliers in Random Effects
Models.

In the remainder of this paper I take a fully Bayes approach, but this section
reviews both Bayesian and empirical Bayesian methodology for outlier detection.

There has been a limited amount of methodology developed for RM REM
outlier detection from an empirical Bayes point of view. Dempster and Ryan
(1985) and Lange and Ryan (1989), discuss methods for checking the normality
of the random effects distribution. Their plots can be used informally for de-
tection of outlying random effects. Waternaux, Laird and Ware (1988), define
empirical Bayes estimates of the random effects as residuals and plot them to
check for outliers. Lange, Little and Taylor (1989) also plot the random ef-
fects, and they and Little (1988) and Louis (1988) present frequentist statistics
for checking for outliers. Louis (1992) has called for the extension of Chaloner
and Brant’s (1988) and Chaloner’s (1991) work on residuals to the hierarchical
model. Weiss and Lazaro (1992) define residuals

B =Y — Xiay — ZifB;,

where the hatted quantities &, and BZ are empirical Bayes estimates of the pa-
rameters (see Laird and Ware 1982; or Weiss and Lazaro 1992) from maximizing
the likelihood resulting from (2). They plot the E; in an empirical Bayes resid-
ual plot for repeated measures data. The plot consists of points Eij vs. 15
for all ¢, using line segments to connect consecutive time points within a case.
Points for differing cases are not connected by lines. This plot can show out-
liers, missing terms in the linear predictor X;o 4+ Z;5;, and lack of fit (Weiss
and Lazaro 1992).

Weiss (1994b) indicates that the residual plots are useful whether the resid-
uals are calculated using a Bayes analysis substituting posterior means for em-
pirical Bayes estimates or by ad hoc or REML (Laird and Ware 1982) estimates.



Weiss (1994b) also advocates plotting estimates B; of the random effects and the
fixed effects residuals R; = Y; — X;@;. The main purpose for plotting the R; is to
check the covariance specification, while outlier detection is one use for the plots
of §;’s and F;’s. For Bayesian accommodation of outliers and robustification of
hierarchical models, see Sharples (1990); Wakefield, Smith, Racine-Poon, and
Gelfand (1994); Lange, Little, and Taylor (1989); Lange, Carlin and Gelfand
(1992a, 1992b) and Seltzer (1993).

3 Distribution Theory.

This section develops distribution theory and some geometric intuition for cal-
culating and understanding residual summaries. Relevant earlier work for the
one way random effects model can be found in Hill (1965) and Chaloner (1994).

Model (1) can be written in more compact notation. Let Y = (Y{, ..., V;})’,
be the vector of all responses and similarly, let X = (X],..., X})* be the matrix
of the coefficients of «; Let Z = diag(Z;), be an irregular block diagonal matrix
N by nq of the matrices of coefficients of 3;; the blocks may be of differing sizes;
let 8 = (B%,...,B%) be the nq vector of random effects; and let €’ = (el,..., €l).

Then the model (1) can be written in the form

Y = Xa+Z7Z8+c¢,
B~ Npg(0,0*I @ D), (3)
¢ ~ Ny(0,0%1).

I use a prior p(a, 3,0%, D) o p(D), which will lead to a proper posterior if p(D)
is chosen properly. Poor choice of prior leads to an improper posterior, which
in turn can lead to convergence problems with Gibbs sampling procedures. The

joint posterior can be written as
pla, Blo?, D,Y)p(a?| D, Y)p(D|Y).

The following matrices are used in the conditional posterior means of « and

5 and in the associated discussion.

Hx = X(X'X)™'x',

Qx = [I—Hx,

Hy = Z2(Z'Z+1eoD Yz,
Qz = I—-Hz,



P; = Z(7'QxZ+ 1o D ) '7'Qx ,and
Px = X(X'QzX)"'X'Qz.

Define the quadratic form Q(Y) = .5Y'Qx (I — Pz)Y. Then

(5 )|prr=x((55)) (Ve 72))
o=

(02)72 T((N —p—2)/2)

where T'(a) is the usual gamma function, and

p(o*|D,Y) = exp{—Q(Y)/(c")},

p(D]Y) o
X X[V DI (21 Qx Z + T @ D772
«T{(N — p—2)/2}Q(Y)~N=r=2/2p(D) .

The location parameters o and 2 are conditionally normal given D and o2 with

conditional means that can be written in either of two useful forms

a(D) = (X'QzX)"'X'QzY (4)
= (X'X)"'XYI - Pg)Y (5)
BD) = (Z'Z+1eD Y 'ZY(I-Px)Y (6)
= (Z'QxZ+10 D H 1 7'QxY (7)

and conditional variances and covariance

Vozoz = UZ(XtQZX)_l s
Veg = o (2'QxZ+1e D™ H™ 1,
Vag = —(X'X)'X"ZVs5 .

The scale parameter o2 is conditionally inverse I' with N —p degrees of freedom
and Q(Y) shape parameter. The posterior of D is not of convenient form for
sampling. Inspection of p(D|Y") suggests that using a prior of the form p(D)

¢ 1s not integrable

|D|~¢ will lead to an improper posterior if the function =
over intervals (0,a), a > 0.

The discussion for the remainder of this section only is conditional on D.
The matrices Hx, and @Qx are projection matrices, for example HxY 1is the
projection of Y onto the column space of X. On the other hand, Hz, Qz, Pz,

and Px are submatrices of projection matrices, but this paragraph proceeds as if,



for example, Hz is the projection onto the column space of Z: this is inaccurate,
but the relationship is made more clear in the next paragraph. Formulae (4) -
(7) are the random effects model generalization of the usual regression formulae
for coefficient estimates with two sets of predictors X; and X,. In particular, the
posterior mean of « (as a function of D) can be thought of in several ways. From
(4), a(D) are the estimated regression coefficients from the weighted regression
of Y on X, with weights the V; matrices from equation (2) and a(D) are the
coefficients from the regression of ¥ on X adjusted for Z. From (5), a(D) is
also the coefficients from the unweighted regression of (I — Pz)Y on X. The
estimate 3(D) can be thought of as the regression of Y on Z adjusted for X
(7), and shrunk towards zero by the prior and it is the shrunken regression of
(I — Px)Y on Z (6). Similarly, the variance matrix V4, is the usual regression
variance of « adjusted for Z, and B(D) has variance Vgg which is from the
regression of Y on Z adjusted for X and is smaller because of the information
supplied by the prior.

The matrices Hx, Qx, Hz, Qz, Pz and Px are all principle N by N
submatrices of projection matrices of order N + ng. Define the partitioned
matrices Z*' = (ZY1 @ DY), V*' = (Y!|0!) and X*' = (X|0?), where
Z*, X*, and Y* all have the same length N + ng, and each has the same
number of columns as 7, X, and Y, respectively. One wayto think of the x*
space 1s that the first V coordinates correspond to observed data, and the last
nq coordinates correspond to prior information or prior observations. In the
augmented * space, we can consider projection onto the space spanned by the
columns of X*, and projections onto the column space of Z*, and projections
onto the orthogonal spaces and projections onto the column space adjusting for
the other matrix. Define e*(a*,b*) = (I—b*(b*'0*)~1b*")a* as the residuals from
the regression of ¢* on b*, where a* and b* are appropriately sized matrices and
a* may be a matrix. Then & are the fitted coefficients from regressing e* (Y™, 7*)
on e*(X*,7Z*), and § are the fitted coefficients from regressing e*(Y*, X*) on
e*(Z*, X*). In other words, in the * problem, the coefficient estimates & and 3
are properly adjusted for each other, in exactly the same fashion that regression
coefficients in linear regression are adjusted for the other predictors in the model.

Let £ = F(D) =Y — Xa(D) — Zf be the conditional vector of resid-
uals. If D were known, then these would be used for plotting and the vi-
sual identification of outliers. As it is, the £ to be used for plotting are the
averages of the E(D) over the distribution of D. In the * problem, define
E* =Y* — X*a — Z*3. Then E*' = (E'|(I @ D=/?)3), and the E* residuals



includes not just the B(D) = Y — Xa(D) — Z3 = (I — Px — Pz)Y but also
the random effects estimates 3 appropriately standardized by the prior stan-
dard deviations (I ® D_l/z). This justifies calling the random effects residuals
by Waternaux, Laird and Ware (1989) and missing data in Laird, Lange, and
Stram (1987). Here the transformed random effects estimates are both residuals
and individual regression coefficients and they are prior observations. The E*
residuals are the projections of the Y* data onto the orthogonal complement of
the X* and Z* spaces. They are a priori mean zero and could also be used for
plotting. Weiss (1994b) preferred to plot the (’s unstandardized and separately
from the E residuals; the untransformed ’s are easier to interpret.

The unobserved residuals ¢ are conditionally distributed
€|D, oY ~ N(E,c*M)
where M is
M = X(X'QzX) 'X'4+QxPz—-HxZ(Z'QxZ+1@ D ) '7'Hx.

The covariance of € and 3 is Qx 2V, which will mostly be large only for €’s
and f’s from the same case, since @Qx will be close to the identity, and Z and
Vgs will be block diagonal and nearly block diagonal respectively. Details and
special cases of the distributions and projection matrices will be worked out in
a future paper. Integrating out o? above gives a t distribution for €| D, however,
this does not help in computing the outlier statistics of the next section, since
due to the nature of the outlier calculation, the cutoff depends on ¢. Finally, it
is probably not a good idea to condition upon D in assessing the uncertainty in
the residuals: D is inherently uncertain, in the sense that the properness of its

posterior depends on the chosen prior.

4 QOutlier Statistics

The POS provide a method for formal identification of outliers. There are several
methods for extending these residuals to multivariate data and to hierarchical
models. For general multivariate data ¥; ~ N(p;,V;), where (2) is a special
case, we can consider either of the statistics
N 1/2
Mi(i,j, k) = P(lyij — pas| > kv |Y)
or

Ms(i, k) = P((Yi = )" Vi (Ve — i) > k[Y)

K3



where pt; = (ps;). The outlier statistic M (¢, j, k) treats each observation uni-
variately. The kernel (V; — /Ji)tVi_l(Yi — ;) in the M; statistic is a Bayesian
analog of the empirical Bayes outlier statistics of Little (1988) and Lange, Lit-
tle and Taylor (1989); My checks the whole case for joint outlyingness along
the elliptical contours of the sampling distribution. One could also consider,
similar to Louis (1988), rotating to the principle coordinates W; = I';Y;, where
FZ'VZTZ»T = A;, A; is diagonal with diagonal elements A;; the eigenvalues of V;
so that W; is the principle component decomposition of Y;, and then evaluat-
ing P(|W;; — Fﬁjuﬂ > k/\ij/z, where W;; is the 4t element of W; and Fﬁj 1s
the j*™ row of I'. This particular decomposition will not be followed further in
this paper for two reasons: the problem of dealing with a parameterized covari-
ance matrix, which is solvable; and two, the procedure introduced in the next
paragraph provides a readily interpretable set of statistics. The value & is used
generically as the cutoff for these and other statistics, however different values
of k should be used for both M (4,4, k) and Ms(i, k) and elsewhere. It can be
useful to entertain several values of k for the same statistic.

For hierarchical models, such as (1) the hierarchical structure suggests sev-
eral outlier statistics be considered. For model (1), one could compute the

posterior probability that
1. Y; 1s far away from its marginal mean X;«,
2. Y; i1s far away from X;a + Z;5;,
3. y;; 1s far away from xﬁja,
4. y;; is far away from xﬁja + zfjﬁi,
5. ¢ is far away from 0,
6. G; is far away from 0,
7. €; is far away from 0, and

8. Bi; is far away from 0.

These 8 possible computations will be called definitions for lack of a better
term. Some simplification is immediate: 2 and 5 are identical, and 4 and 7; the
different mathematics suggest different ways of thinking about the same thing.
The first definition is the same as Ms(7, k), and the third is M;(é, k). Four

elements of the above list are univariate (3, 4, 7, 8) and four are multivariate.



When there is only one random effect, 6 and 8 are identical and for cases with
n; = 1, 1 and 3 are identical and 2 and 4 are identical.

Definitions 7 and 8 are simple and interpretable in the context of a random
effects model. Each level of the hierarchy produces a set of outlier statistics and
by analogy, a set of residuals suitable for plotting.

At the base level, we have the ¢; = Y; — X;a — Z;3; as random errors which
are a priori normal with mean zero, given the parameters. The posterior mean ¢;
of the ¢; is a summary of the posterior that is suitable for plotting and informal

identification of outliers. The corresponding Posterior Outlier Statistics are
Oc(i,j, k) = P(leij| > koY),

the posterior probability that ¢;; lies more than k prior standard deviations from
its prior mean. At the second level of the hierarchy, we have the 3;, a priori
mean zero with prior variance D given the parameters. The posterior mean j3;
is suitable for plotting and informal identification of outliers. The POS for §;;
is the posterior probability that 3;; is more than k& standard deviations from its

prior mean of zero 1is
CooN 1/2
Oﬁ(la]ak) - P(|BZ]| > ]CO'd]] |Y)a

where dj; is the j*® diagonal element of D. At the third level of the hierarchy, the
parameters (a, 02, D) have improper priors and no prior conditional mean, so no
residual exists for plotting purposes and no POS. When interest lies specifically
in high and low outliers as might happen in the areas of chemometrics, quality
control, or human research, the absolute values in the definitions of O.(%, j, k)
and Op(¢, j, k) can be replaced by a 4+ or — sign as appropriate.

Posteriors of the residuals ¢; can be formed from samples of the posterior as
ggl) = }/Z — Xioz(l) — Zzﬁgl) .

The posterior distributions of the f;’s are taken straight from the posterior
samples. More accurate computations can be produced by integrating over
some or all of o, 3;, and o? and then calculating the posterior density as a
resulting mixture of closed form computations. These calculations are given in
section 3.

The POS’s O.(i,j, k) and Og(4, j, k) make for easy inference and followup
action. Cases with large outlier statistics can be identified in plots of &; and

B;;. While there will be confounding between 3; and ¢; whenever n; < ¢, even

for n; only somewhat greater than ¢, as in the examples in section 6, the POS’s

10



distinguish quite satisfactorily between ¢ and 4 outliers. When Og(i, j, k) is
large, it suggests checking that the particular individual ¢ is actually a member
of the population of interest. For example, one might inspect baseline predictors
for accuracy or unusualness. When O.(4, j, k) is large, it suggests first checking
if the observation y;; was recorded in error, or if either z;; or z;; are recorded
in error or if the conditions during measurement were in some way aberrant.
If several O(4, j, k) are large, it additionally suggests checking whether there is
something unique about individual ¢ and again whether individual ¢ is a member
of the population of interest. When many O.(¢, j, k) or Og(4, j, k) are large,
it suggests that there may be a problem with the model; this idea suggests a

goodness of fit check may be possible and is discussed further in the next section.

5 Summary, Multivariate, Specialty and Good-
ness of fit Outlier Statistics

The recommended outlier statistics O(¢, j, k), and Og(4, j, k) will produce n; +¢
outlier statistics per case in a general data set, which can be a moderate burden
on the data analyst. One sensible way to reduce the burden is to set the value
of k£ high enough to ensure that only a few cases are identified as extreme.
Sometimes this is undesirable; since this might miss sets of observations that
have large ¢; and f3; but are not the most extreme. The next two subsections
consider statistics to screen cases so that the individual POS’s O.(¢, j, k), and
0Os(1, j, k) need only be considered for a few cases. Subsection 5.1 considers the
multivariate statistics resulting from outlier definitions 5 and 6. Subsection 5.2
suggests a direct summary of O.(17, j, k), and Op(¢, j, k). Subsections 5.3 and 5.4

discuss targeted outlier statistics and general purpose goodness of fit statistics.

5.1 Multivariate Outlier Statistics

Definitions 1, 5 and 6 might be used to reduce the burden of n; 4+ ¢ statistics per
case. Definition 1 seems less than useful, because it ignores information available
in the hierarchical model. Definitions 5 and 6 are analogs of definition Ms (7, k)
that treat the different levels separately. Define &; = €/(0?1)le; and &g =
BID~1B;. A priori given the parameters, &.; is a x? random variable with n;
degrees of freedom, and similarly, £g; is a priori distributed as a y*(¢). It makes

sense to compare them a posteriori to quantiles of the chi-square distribution

11



with n; and ¢ degrees of freedom. Define
MVO,i(k) = P(ée; > k|Y)

where k is chosen to be x*(1 — a,n;), the 100(1 — a)th percentile of the y?
distribution with n; degrees of freedom, and similarly for MVOg;(k), except k
would be chosen based on a chi? with ¢ degrees of freedom. In parallel with
the Chaloner and Brant (1988) suggestion, one might choose a = n=1.05 so
that a priori the expected probability of finding an € outlier is .05 over all, and
similarly for MVOg; (k).

The posterior means of the &; statistics for either €’s or 3’s could be plotted
in QQ-plots as in Lange, Little, and Taylor (1989), Dempster and Ryan (1985)
and Lange and Ryan (1989). If the n; are different, the posterior means could be
back transformed using the appropriate y? distribution and then retransformed
to a convenient distribution for plotting.

The nice thing about the O.(7,j, k) and Og(i, j, k) outlier diagnostics in-
troduced earlier 1s that they directly suggest useful actions for a data analyst
to take. A disadvantage of the univariate diagnostics is that they cannot find
multivariate outliers. Many readers will be familiar with the plot of data from
a correlated bivariate distribution with a single observation that is not extreme
on any univariate measure, but is unusual in the bivariate distribution. In par-
ticular, in the equicovariance model, an observation could be high on early time
values and low on later times - suggesting a missing slope effect. Diagnostics
based on & ; can find multivariate outliers but will not perfectly agree with

diagnostics based on O(4, j, k) since they ask different questions.

5.2 Summary Outlier Statistics

A single number summary measure of the O.(¢, j, k) that is directly useful for
identifying cases with large O.(4, j, k) is

nq

Ocli, +,k) = >0, 4, k).
ji=1
This statistic might be disdained because of its lack of sophistication. On the
other hand, it is a perfect screening statistic for the individual O.(¢, j, k) since
if it is small, none of the O(¢, 4, k) can be large. It can be interpreted as the

posterior expected number of € outliers for case i. When there is more than one

12



random effect, an exactly parallel construction leads to
q
Op(i,+,k)=>_ O0pli,j, k).
ji=1

5.3 Targeted Outlier Statistics

Special purpose outlier statistics can be developed to target specific model prob-
lems. Two examples are given, although more can certainly be considered. A

statistic that checks if ¢;1 = (€2, €4) is outlying is
Oy (i, k) = P(¢fithin > ka®[Y).

A priori, Oy (i, k) is x* with 2 degrees of freedom, and checks to see if (&2, €;4)
is a bivariate outlier. The constant k& would be based on some quantile of a
x%(2). Alternatively, one can consider if 15 = €;2 — €4 is an outlier. That is, is
the difference between the two residuals unusually large? The relevant outlier
statistic becomes:

Oy1(i, k) = P(¥7, > 2ka?|Y),

and k is taken from an appropriate quantile of a y? with 1 df. The 2 on the right
hand side is because €9; 4 €4; are a priori independent and identically distributed

(iid).

5.4 Goodness of Fit

We can calculate the a priori expected value and variance of the number of
outliers in a model. Since the POS are posterior expected number of outliers,

this suggests that a goodness of fit statistic is possible. Consider

Q. (k) = ZH:MVOEZ»(/C)

and .
Qp(k) = ZMvoﬁl(/@).
i=1

Assume that k is chosen to be the a probability tail quantile of the appropriate
x? distributions. Then a priori, 2.(k) and Qg (k) has a priori expectation na,
and standard deviation equal to SDg = (na(l — a) + V4 + Vz)l/z, where V3
is a correction for posterior uncertainty, since the exact values of the ¢; are

unknown, and V5 is a correction for possible computation based uncertainty

13



such as a finite sample size in a Gibbs sampling (Gelfand and Smith 1990)
algorithm. The variance Vo can usually be made arbitrarily small in Gibbs
sampling. It is unclear how to compute V3, since the individual outlier statistics
MVOc(k) can be highly correlated a posteriori, and because the first term in
SDg is a sampling variance while the second term is due to the fact that we
have posterior uncertainty. In large samples, assuming n; large also, then V5
will be small.

A goodness of fit statistic may not be perfectly useful in the RM REM.
Unlike a graphic, it does not tell us what part of the model is the root cause
for it’s size. In the current examples, Q.(k) or Qg(k) might be large because
there are a) missing fixed effects; b) missing random effects; ¢) non-normal ¢
or 3 errors; d) outliers; or ) missing predictors. Even deleting an extra useful
predictor could lead to adequate goodness of fit. The presence of two goodness
of fit statistics, Q.(k) and Qg(k) and the possibility of more targeted goodness
of fit statistics in the previous section make them potentially more useful. In the
weight loss example in section 6, Q.(k) is large while Qg(k) is small, suggesting
that the plot of the ¢; residuals should be inspected, and not the plot of the 3

residuals.

5.5 The General Hierarchical Model

Lindley and Smith (1972) consider a general hierarchical model where y|61, C ~
N(A101,C1) at the first stage; 01|02, Ca ~ N(Az62,C2) at the second stage,
and; at the third stage, 05|03, Cs ~ N(Aszf3,C3). Then for each stage where the
residuals are conditionally zero, there will be an outlier statistic for each element

6;; of 8; of the form P(]#;; — Aﬁjﬁ(i+1)| > kC’Z»l/jz), where Aﬁj is the jth row of
A;, and Cjj;; is the jth diagonal element of C;. The ideas of this section can
be used both to reduce the number of outlier statistics and to develop special

purpose statistics.

6 Examples

6.1 Pediatric Pain Example

The model for this data is (1), with ¢ = 1, p = 8, n = 64 and usually four
observations per child. The observations are the log of the time that a child can
keep his or her arm immersed voluntarily in very cold water. The X; matrix

for each child is a column of ones, a column of 0’s or 1’s depending on whether
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id  Op(1) Oc(i,1) O(i,2) O(i,3) Oc(i,4)
Bi €i1 €2 €i3 €i4

10 2 0 0 0 0
(-.99)  (.09)  (-.04)  (-17)  (-31)

20 1108 0 0 0 0
(1.94)  (.38)  (.38) (.34) (-.26)

55 488 0 0 0 0
(171)  (28)  (.28) (28)  (-11)

59 29 146 2 2 0
(1.32)  (-.91)  (.69) (.69) (.10)

30 0 406 366 406 17
(93)  (1.06) (-1.04)  (1.06) (-.67)

31 0 0 1918 186 15
(-.61)  (-25) (1.61)  (-97)  (-.65)

61 0 4 0 0 424
(27)  (-.68)  -.16) (-.08)  (1.04)

Table 1: Outlier statistics for the pediatric pain data set. Key: id =
Case number; Op(i), is the probability that f; is an outlier with k = 3;
0c(i,1),0.(1,2),0c(1,3), Oc(i,4) are the probabilities that the ¢;;, for j = 1, ..., 4
in the i'? case are outliers with k = 3; the last argument was deleted. All prob-
abilities have been multiplied by 2001, the Gibbs sample size. The second line

for each case are the estimated residual means; § = posterior mean of random
effect; €; are the posterior means of the ¢;’s.

the child i1s an attender or distracter, which is the childs general style of coping
with the pain of the cold water. The last 6 columns are all zero except for a
single one at time 4 indicating which of three treatment groups the child was
randomized to. The three treatments are three forms of counseling given prior
to the last measurement. The treatment can be instruction to attend, distract,
or a null counseling.

Figure 1(a) shows a parallel plot of the posterior means of the residuals
& (Weiss and Lazaro 1992; Weiss 1994b), and 1(b) gives a histogram of 3;.
Both figures show a certain number of outlying observations. Table 1 gives
the POS and the posterior mean residuals for the observations identified by
either Og(7, k) and O.(4, j, k) as large, for k = 3. These outlier diagnostics can
distinguish clearly between random effects outliers and sampling error outliers.
The statistic Og(7,3) is in column 2, the unneeded third argument has been
dropped, and the O(7,4,3) are in the last four columns. Most statistics are

0, and are not shown. A few other cases have O.(,j,3) greater than zero,
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Figure 1: Residual plots for pain data. (a) Parallel plot of e-residuals. (b) His-
togram of posterior means of random dffects.



model tail area Q. (k) exp se  Qg(k) exp se
.05 4.43 1.9 1.34 2.0 1.90 1.34

random intercept .01 3.28 38 .61 .78 .38 .61
.00270 2.49 .10 .32 .30 103 .32

.00270 1.39 .10 .32 .28 .10 .32

random slope and
intercept

Table 2: Goodness of fit statistics for weight loss data. Tail area is the proba-
bility in the tail which & corresponds to; exp is the prior expected value for the
statistic, and se is the prior standard error.

but all nonzero Os(7,3)’s have been shown. The outlying 3 cases are generally
different from the outlying e residuals. The probability that G50 1s more than
3 standard deviations away from 0 is .55, a clear indication that this case is
an outlier. In contrast the prior probability of any outlying random effect is
64 % 2% ®(—3) = .17, 64 times twice the normal tail area beyond +/ — 3. Case
30 is an attender taught to attend that has the largest residuals in Figure 1(a);
from table 1, the probability that 35 is an outlier is 0, but the probability that

€30,1, €30,2, and €3¢ 3 are outliers for & = 3 is about .2 for all three observations.

6.2 Weight Loss Data

The weight loss data contains observations on 38 women enrolled in a diet
study. Measurements were taken weekly, this data set was formed prior to the
end of the study, and some data is missing. A plot of the raw data (Weiss 1994b)
suggests a random intercept 1s needed. Table 2 lists goodness of fit statistics
for this model for several values of k. No lack of fit is indicated for the random
effects, but there are apparently excess outliers in the € residuals; the goodness
of fit statistics are substantially larger than expected for tail areas of .01 and
.0027. Inspecting Figure 2(a) indeed suggests that a random slope is needed to
properly model these data. The residual plot for the model with a random slope
and intercept is in part (b) of this figure. Again some structure is apparent,
indicating the need for further modeling. The goodness of fit statistic is smaller
than the previous model, but still large, indicating excess very large residuals.

For the model with a random intercept and slope, Table 3 gives the outlier
statistics for individual ¢; and §;. Case 8 at week 2 corresponds to the largest
outlier visible in figure 2(b), with a posterior probability of being greater than

3 prior standard deviations estimated at .56. Cases b and 35 are identified as
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Figure 2: Residual plots for weight data. (a) Parallel plot of e-residuals, model
with random intercept. (b) Parallel plot of e-residuals from model with random
intercept and slope.
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Figure 3: Weight loss data: posterior means of random effects.

having some probability of being univariate outliers, but the multivariate out-
lier statistic indicates that they are quite probably big outliers. There are not
too many [ outliers. Cases 10 and 25 are formally identified as univariate out-
liers. Figure 3 also shows in an informal manner that these cases are univariate
outliers. No multivariate outliers are identified, either formally using the POS
statistics or with the plot. Figure 3 also shows that heavier study participants

tend to have greater weight loss.

7 Discussion.

A competing Bayesian outlier diagnostic is the conditional predictive ordinate

(CPO)
CPO; = /f(yi|$i,ﬁi,0)1?(5, o:i|Y(iy)

(Geisser 1980; Geisser 1993 Chap 4; Pettit and Smith 1985; Pettit 1990; Pena
and Guttman 1993; Weiss 1994a). For an example of its use in hierarchical
models, see Sharples (1990). Pena and Guttman (1993) prefer the CPO to the
POS O(i, k) because it better approximates a statistic from a complex mixture
model. In contrast, POS is designed to identify cases with large residuals ¢;.

It would be a mistake to assume that it is not useful because 1t does not ap-
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proximate a statistic which it was not designed to imitate. POS has a simple
definition and is intuitively appealing. It is bounded between zero and one, and
thus is restricted to an interpretable scale. In contrast, CPO; occurs often as a
limiting component of more complicated mixture models, and while it may have
a wider range of uses, it is harder to explain and, because it has a range which
varies with the problem and even the particular observation, it can be harder
to interpret.

All of the discussed outlier statistics have implicitly assumed that larger
values indicated more outlying. It is possible that extreme values of a residual
such as €¢; do not necessarily correspond to more outlying. A simple example
occurs in the location model where the y; are iid with multi-modal sampling
density f(y; — /mu) and mean p. Outlier identification regions other than
le;| > ko could be defined. In situations like this, the outlier statistic could be
altered to P(f(y; — p) < ¢|Y). This brings the POS statistic closer to CPO
in conception: the POS is a posterior probability summarizing the distribution
of f(y; — ps), while CPO is the inverse posterior harmonic mean of f(y; — 1)
(confer Weiss 1994a). This connection between the POS and CPO extends to
other models, including the regression location model (with known scale) but if
the scale parameter ¢ is unknown then the POS becomes P(f(y; — p) < co|Y).
The definition of CPO does not change, which is actually a flaw of CPO. Suppose
a regression model with nonconstant variance known up to an unknown scale
parameter. An observation with a variance known to be very large will almost
automatically be an outlier while an observation known to have a small variance
a prior1 will not be an outlier, assuming, of course, that the model is correct.

Other summaries of f(y;|0) can serve usefully as outlier statistics. For ex-
ample, Aitchison and Dunsmore (1975) consider E[f(y;]6)|Y] as a measure of
discordancy. Weiss (1994a) shows that influence measures are also posterior

summaries of f(y;|0).
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Table 3: Outlier statistics for the diet data set. Columns are 1) case number

(from 0 to 37); 2) 2001 % O(4,7,3) for j = 1,..

sum(e) is O, (%,
is Qg (k)

., 8, missing data identified by ‘-’;

,3); MVO(e) is MVO. (7, k); sum(B) is Os(4, +, 3), and MVO(5)
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