Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite.

Abstract

Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe2O3, in contact with one of the fastest known water oxidation catalysts, Ni0.8Fe0.2O x , by directly measuring/controlling the current and/or voltage at the Ni0.8Fe0.2O x catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in α-Fe2O3 directly transfer to the catalyst film over a wide range of conditions and that the Ni0.8Fe0.2O x is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the α-Fe2O3. The Ni0.8Fe0.2O x therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the α-Fe2O3|Ni0.8Fe0.2O x interface is significantly decreased by the oxidation of Ni2+ to Ni3+ and the associated increase in the Ni0.8Fe0.2O x electrical conductivity. In sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View