Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Synthetic Gene Network with Positive Feedback Loop Amplifies Cellulase Gene Expression in Neurospora crassa

Published Web Location

https://pubs.acs.org/doi/10.1021/acssynbio.8b00011
No data is associated with this publication.
Abstract

Second-generation or lignocellulosic biofuels are a tangible source of renewable energy, which is critical to combat climate change by reducing the carbon footprint. Filamentous fungi secrete cellulose-degrading enzymes called cellulases, which are used for production of lignocellulosic biofuels. However, inefficient production of cellulases is a major obstacle for industrial-scale production of second-generation biofuels. We used computational simulations to design and implement synthetic positive feedback loops to increase gene expression of a key transcription factor, CLR-2, that activates a large number of cellulases in a filamentous fungus, Neurospora crassa. Overexpression of CLR-2 reveals previously unappreciated roles of CLR-2 in lignocellulosic gene network, which enabled simultaneous induction of approximately 50% of 78 lignocellulosic degradation-related genes in our engineered Neurospora strains. This engineering results in dramatically increased cellulase activity due to cooperative orchestration of multiple enzymes involved in the cellulose degradation pathway. Our work provides a proof of principle in utilizing mathematical modeling and synthetic biology to improve the efficiency of cellulase synthesis for second-generation biofuel production.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item