Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Poricoic acid A enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/AxlNFκB/Nrf2 axis.

Abstract

Renal ischemia-reperfusion injury (IRI) is a complex syndrome, which causes chronic kidney disease (CKD) after recovery from IRI-mediated acute kidney injury (AKI). There is no single therapy that could effectively prevent the renal injury after ischemia. In this study, the effects of melatonin or poricoic acid A (PAA) and their combination were investigated in protecting against AKI-to-CKD transition in rats and hypoxia/reoxygenation (H/R)-induced injury in cultured renal NRK-52E cells. Melatonin and PAA significantly reduced the magnitude of rise in serum creatinine and urea levels in IRI rats at days 3 and 14. Our results further showed that treatment with melatonin and PAA ameliorated renal fibrosis and podocyte injury by attenuating oxidative stress and inflammation via regulation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) pathways in IRI rats. Melatonin and PAA protected against AKI-to-CKD transition by regulating growth arrest-specific 6 (Gas6)/AxlNFκB/Nrf2 signaling cascade. Melatonin and PAA initiallyupregulated Gas6/Axl signaling to reduce oxidative stress and inflammation in AKI and subsequently downregulated Gas6/Axl signaling to attenuate renal fibrosis and progression to CKD. Melatonin and PAA inhibited expression of extracellular matrix proteins. Poricoic acid A enhances melatonin-mediated inhibition of AKI-to-CKD transition by the regulating Gas6/AxlNFκB/Nrf2 signaling cascade. Notably, our study first identified Axl as a promising therapeutic target for prevention of AKI-to-CKD transition.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View