Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities

Published Web Location

https://doi.org/10.1038/nn.2617
Abstract

In mammals, synchronization of the circadian pacemaker in the hypothalamus is achieved through direct input from the eyes conveyed by intrinsically photosensitive retinal ganglion cells (ipRGCs). Circadian photoentrainment can be maintained by rod and cone photoreceptors, but their functional contributions and their retinal circuits that impinge on ipRGCs are not well understood. Using mice that lack functional rods or in which rods are the only functional photoreceptors, we found that rods were solely responsible for photoentrainment at scotopic light intensities. Rods were also capable of driving circadian photoentrainment at photopic intensities at which they were incapable of supporting a visually guided behavior. Using mice in which cone photoreceptors were ablated, we found that rods signal through cones at high light intensities, but not at low light intensities. Thus, rods use two distinct retinal circuits to drive ipRGC function to support circadian photoentrainment across a wide range of light intensities.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View