Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Electron-Affinity Time-Dependent Density Functional Theory: Formalism and Applications to Core-Excited States

Abstract

The lack of particle-hole attraction and orbital relaxation within time-dependent density functional theory (TDDFT) lead to extreme errors in the prediction of K-edge X-ray absorption spectra (XAS). We derive a linear-response formalism that uses optimized orbitals of the n - 1-electron system as the reference, building orbital relaxation and a proper hole into the initial density. Our approach is an exact generalization of the static-exchange approximation that ameliorates the particle-hole interaction error associated with the adiabatic approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical performance of just 0.5 eV root-mean-square error and the same computational scaling as TDDFT under the core-valence separation approximation, we anticipate that this approach will be of great utility in XAS calculations of large systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View