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Distortion in an object due to the unavailability of 
some Fourier components in a cone-shaped region is 
analyzed. The results throw light on the factors that 
limit the accuracy in reconstructing objects from 
limited-angle input in practice. It is also shown 
that norm- or entropy-related reconstruction methods 
are not expected to improve the fidelity of the re­
constructed images; only more a priori knowledge of 
exact nature on the object can serve this purpose. 

IHTROP'JCTION 

In many radiation imaging applications, such as X-ray 
computerized tomography, nuclear medicine, and electron 
microscopy, it may be necessary or advantageous to 
image an object from a restricted angular range. It 
has been shown that in such cases the Fourier compo­
nents of an object that can be measured directly are 
those outside a cone-shaped region in the Fourier 
space [1,2], In principle, all the missing 
Fourier components can be recovered completely if the 
object is known to be finite in extent [tf2j. In this 
papar we explore the practical limits to t!ie recover­
ing operations. In conformity with our previous 
terminology , we shall refer to the region in Fourier 
space where the Fourier components of an object arc 
measured directly as the "allowed cone", and where 
they are not known as the nnus"sing cone". 

Information Contained in Limited-Angle Data 

In this section we derive an expression for the dis­
torted object obtained by setting the Fourier com­
ponents of an object in the missing cone to zero, 
which throws light on the practical limits to restric­
ted-angle reconstructions. 

Hn iteration algorithm has been proposed in our pre­
vious papers [l,2] to recover the missing-cone Fourier 
components of an object distribution. The algorithm 
is shown in Fig. 1. After initially setting its 
missing-cone components to zero, the object is manipu­
lated back and forth between the object space 
(x-apace) and the Courier space tk-space) via Fourier 
transformations, being corrected in each step by its 
known finite spatial extent s. and the measured Fourier 
components inside the allowed cone R_ which are 
schematically shown in Fig. 2. The iteration scheme 
can be formulated in terms of two operators A and 3 
opearing on any Fourier transformable function f 
defined in the Fourier space. A and B are defined as 
follows: 

Af 

Sf -*Xn F C 

*.-! where F and F * represent the Fourier transformation 
and its inverse; \, ̂  are, respectively, the 
characteristic functions of the allowed cone, R , in 
Fourier space and of the object re33.cn, R. , in object 
space, and are defined as: 

-DISCLAIMED ' I 

r 1 )< c R 
no -\ ~ ' 

Lo k_ t R {1 X E 

0 X t 'n terms of these operators the reconstructed image 
L \k) in Fourier space after n steps of iteration 
an t 
(11, 

R""TJO in Fourier space 
can be represented as 

R*" 00- BAR(k), 

* ( n l (k)» BARfkJ + (I-BAJ R ( 

for n * 2, 3, 4,••- * 
(k) (1) 

where R(k) is the Fourier tr^ ^form of the object. It 
has been shown in 13] that equation (1) can be written 
in terms of the orthonormal set of eigenfunctions 
\<l>. 00 }of the composite operator BA and the corres­
ponding set of eigenvalues (X.l, 

->), I a. U-(l - ^ " j ^ f * ) , ° < X l (2) 

where the a.s are the expansion coefficients of the 
object R (k_) in terms of the i>. s, 

R(k) 2a.Y. (k) 
i 1 1 (3) 

Now from equation (1) the image after the first 
iteration, R^ M k ) , is the distorted object obtained 
by setting the missing-cone Fourier component- of the 
object to zero, Fourier transforming to the object 
space, and then resetting the values outside the 
known object reg-on to zero. From equation (2) this 
distorted object is given by-. 

,U) (k) E*.a.U>. (k) (4) 

Equation (4) shows that each eigenfunction component 
a-C\- 0O of the object is attenuated by a factor \. 
if the Fourier components of the object in th^ missing 
cone are set to zero. This result agrees well with 
the meaning of the A.S, namely, A., is the ratio of the 
energy of the function t). (k> in ?* to the total energy 
of * 4 (k) [4] . X 

Equation (4) alsc shows that in principle an object: 
R(k) can be inverted from the distorted object F.( (kj 
with information only in the allowed cone: each 
eigenfunction coefficient a- of ROO is obtained by 
dividing the corresponding coefficient of R^(50 by 
\ 4. This inversion process is possible for every 
eigenfu-iction ccnpor.ent, since all the eigenvalues are 
r.cn-sero. In other words, all the information on an 
cb^ect is, in principle, contained in its Fourier 
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Components in the allowed cone. We note that a rela­
tion similar to equation (4) was also derived in a 
recent paper by Rushforth and Frost [5) for one-
dimensional band-limited signals. 
In practice, however, the eigenfunction components 
corresponding to the small eignevalues are very 
difficult to recover because of the instability due to 
noise amplification by 1/*,. Figure 3 shows a plot of 
the spectra of \^ for various half-angles of the 
allowed cone for a 9 pixels by 9 pixels square-shaped 
object boundary in a 21 x 21 reconstruction region. 
Each spectrum can be roughly divided into two regions: 
one in which the \^s are close to unity, and the other 
in which the ^ s are close to zero. It is these small 
\^s which make the inversion problem unstable in the 
presence of noise. 
Even in the hypothetical situation of noise free input 
data, some of the eigenfunction components correspond­
ing to very small eigenvalues are lost in practical 
computation. This is dve to the fact that all compu­
ting devices have a finite accuracy 5, which means 
that if *H,a- <"5 it cannot be registered, and conse­
quently a, cannot be determined by any mnans. Such 
indeterminacy is to be expected from the meaning of 
A^: the eigenf unction component: ajt^UO cannot be 
recovered if it is too weakly represented in the data 
as to be of any practical use. similar conclusion 
was also arrived at by Klug and Crowther [6], 
As an illustration consider the above mentioned 
Fourier .iteration algorithm in Fig. 1. The truncation 
error E (k) in terminating the iteration after n 
steps is obtained from equation (2): 
E t

( n >(k) - R ( n ) 0 0 - R(k) 
- -Ea (1 - l ) V ( k l 

i x L 1 -
For the \^a close to one the error coefficients 
(1-X^) approach zero rapidly as n increasesj whereas 
for the X,s close to zero it will take a very large 
number n of iterations for (1-A.) to converge to zero. 
For those \,s below the accuracy of the computing 
device, Cl-A.) always stays at 1 and does not converge 
at all, which means that the corresponsing component 
a.^. (kj cannot be recovered. In such case the itera­
tion algorithm automatically sets these components to 
zero, from equation (2), which is the most reasonable 
thing to do in the absence of any information. 

Worm Minimization and Entrophy Maximization 
The problem of determining the eigenfunction components 
corresponding to very small eigenvalues can be likened 
to the missing-cone problem which we start with. The 
Fourier components in the missing cone are not known 
initially, but, in principle, the additional informa­
tion on the finite spatial extent of the object enables 
these missing Fourier components to be calculated frus 
those in the allowed cone. Similarly, the ir.detemi-
nate eigenfunction components corresponding to very 
small eigenvalues can be recovered, and thus the 
fidelity of limited-angle reconstructions improved, 
only if more a priori knowledge or constraints on the 
object other than its finite extent and location are 
available. For example, if it is known that an object 
hi* n-fold rotation i-yreetry, projections in an angular 
range of V n (instead of full -r angle) will suffice to 
reconstruct it completely. Another exarple occurs xn 
determining the refractive index {heat distribution) 
around a wire carrying current wher- the diffusion 

equation holds [7], However, except for the constraint. 
of positivity which has been shown to be of little 
help in reconstructing extended objects [3J, no ether 
constraints of an exact nature are available for general 
objects. 

There are a number of algorithms which attempt to 
reconstruct an object by imposing some extremum proper­
ty on the object as-additional information. Among 
these algorithms are norm minimization [91 and 
entropy maximization [10,11]. The constraints of 
minimum norm and maximum entropy are not exact des­
criptions of the object, rather they are probabilistic 
in nature. In this section we investigate the possi­
bility of using these constraints to recover the un­
determined coefficients a.a of the small-eigenvalue 
components in limited-angle reconstruction. 
The significance of the minimum norm solution is that 
it is also the minimum variance solution consistent 
with the data. This can be seen by considering 
/(Pfr) - J)Vr 

t 2 2 -2 
• JP(rj d r - p x (object area) 
where P is the mean density of the object distribution 
P(r>. 
Minimum nora reconstructions thus presuppose that 
reconstructed images containing wide ranges of density 
values are unlikely. From Parseval's theorem and 
equation (3) , the norm of P{r) can be written as 
/p<r) 2 d 2r - /U(k)| 2d 2k 

- S|a il 2 (51 
Equation (5) indicates that setting the undetermined 
coefficients *.s of the small-eigenvalue components to 
zero yields the minimum norm solution subject to the 
constraints of the measured data and the finite object 
boundary- Clearly this solution may not be the true 
solution. 
The entropy S of an object distribution {p, } is defined 
as [12J: 1 

pi pi S =» - E zr- log — . T 3 T i 

where T • Z P• is the total object density. This 
quantity is a measure of the degree of randomness, 
and hence the probability of occurrence, of an object 
distribution [13]. Algorithms of object reconstruc­
tion through entropy maximization are based on the 
assumption that the most probable object distribu­
tion is the one that possesses maximum entropy s^oject 
to some given constraints, such as projection data at 
some angles. 
We have plotted the ratio of the rms error to mean 
density and the entropy of some reconstructed images 
of a 2-L> phantom. The phantom, shown in Fig. 4. is a 
diamond-shaped object in a 32 x 32 reconstruction 
region; the densities of the boundary, the interior, 
and the hot spot in the middle are 2, 1, and 4 
respectively. The object was reconstructed frcm its 
Fourier components in the allowed cone through the 
Fourier iteration algorithm. The results are shown 
in Fig. 5-9 for the cases,where the half-angle of the 
allowed_ccne equals tan X(0.S), tan (!)t tan" f£] , 
and tan (4) respectively. The ras error converges 
to a steady lev^l after about 20 iterations in all 
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cases; the magnitude of the residual rms error 
decreases with increase in the allowed-cone angle. 
Die behavior of these rms error curves can be expected 
from the shape of the spectra of eigenvalues shown 
in Fig. 3. As mentioned in the previous section, 
the finite residual error is due to the small eigen­
values whose error terms ^ ( l - U ^ l k ) approach 
zero very slowly or not at all. xAs the allowed cone 
angle increases. Pig. 3 shows that the proportion of 
small eigenvalues decreases, so does the residual 
error. 

As for the entropy of the reconstructed images, it 
increases rapidly with decrease in rms error during 
the first ~20 iterations, and then converges to the 
entropy value of the original object after the rms 
error settles to a steady level regardless of the 
magnitude of the residual rm3 error. Since the 
residual error is caused by the small eigenvalues, 
these results show that the entropy of the reconstruc­
ted images is insensitive to the small-eigenvalue 
components. The reason for this insensitivity is 
discussed in Appendix A. The implication, however, 
is quite clear: it would be very difficult to recover 
the small-eigenvalue components by any entropy-related 
reconstruction methods. 

Conclusion 

We have shown that due to limitations in computing 
accuracy some information is not recoverable in 
reconstructing an object from restricted angular input. 
This is true even in the ideal case when there is no 
error in input data. The fidelity of reconstructed 
images can only be improved if more a priori infor­
mation on the object other than its finite spatial 
extent and location is available. We have also 
shown that norm- or entropy-related methods are not 
likely to produce such improvements. 
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Appendix A 

The reason 1:or the insensitivity of the entropy of 
reconstructed images to the small-eigenvalue components 
can be understood with the help of Fig. 1. Assume 
the center lines of the allowed cone and the missing 
cone are oriented along the k^-axis and the k -axis 
respectively. Let o. represent the object density at 
pixel i recontructed from limited-angle information 
through the Fourier iteration algorithm, and £P, be 
the contribution to the density at pixel i from the 
very-small-eigenvalue components that cannot be 
determined and hence set to zero. Thus {P^ +• Ao- } 
represents the true object distribution. The distri­
bution {Ap.}is essentially made up of low-k^ high-k2 

Fourier components since they are furthermost away 
from the allowed cone and hence least affected by 
the information there. Consequently [oi) is deficient 
in low-k^ high-k Fourier comoonets, and thus the two 
distributions tp.i and lip.} are uncorrelated. 

Assume io^ is normalized, i.e. " ^ » 1, it then 
followsiPi + A o ^ is also normalized since £AP, » 0. 
The entropy 3 of the object and the entropy S' of Lhe 
reconstructed inage are given by 

S • ~ ZWi + aPi> log {Px + AP±J 
i 

S' - - I Pi log 0L 

i 

Their difference is 

S - S' » - E 4Pj log °i 
i 

Since (Q^, &o. are uncorreiated, it is reasonable 
that (Api) and tlog p ^ are also uncorrelated, thus 
C A P . log P. * 0 

and 

S - s' 
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FICDRE CAPTIONS 

Figure 1. Fourier transform iteration scheme for filling in missing-cone Fourier components. 

Figure 2. Schematic representations of the allowed cone and the object extent. 

Figure 3. Eigenvalue spectra of BA for a 2-0 problem for various half-angles of the allowed 
cone. 
Ra: oriented along the k -axis 
Rb;-a 9 pixels by 9 pixels square in a 21 x 21 reconstruction area. 

Figure 4. A 2-0 diamond-shaped phantom. 

Figure 5. The ratio of rms error to mean density and the entropy of the reconstructed image 
of the diamond-shaped phantom as a function of the number of Fourier transform 
iterations. The half-angle of the allowed cone is tan (O.S). 

Figure 6. The ratio of rms error to mean density and the entropy of the reconstructed image 
of the diamond-shaped phantom as a function of the number of Fourier transform 
iterations. The half-angle of the allowed cone is tan (1). 

Figure 7. The ratio of rms error to mean density and the entropy of the reconstructed image 
of the diamond-shaped phantom as a function of the number of Fourier transform 
iterations. The half-angle of the allowed cone is tan (2). 

Figure 8. '. ie ratio of rms error to mean density and the entropy of the reconstructed image 
of the diamond-shaped phantom as a function of the number of Fourier transform 
iterations. The half-angle of the allowed cone is tan (4). 
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Known Fourier components of 
the object inside the allowed 
cone; missing-cone components 
set to zero initially. 

U3 

rc> 

Estimated Fourier spectrum 
of the object, corrected to 
the known Fourier components 
inside the allowed cone. 

-H^Tl 

F.F.T. •>-
Estimated object density, 
corrected to zero outside 
the known extent of the 
object. 

A priori information 
on the extent and 
location of the object. 
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HALF-ANGLE OF ALLOWED CONE = tan'1 (4) 
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