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ABSTRACT

Digtortion in an object dQue %o the unavailability of
some Fourier components in a cone-shaped region is
analyzed. The results throw light on the factors that
limit the accuracy in reconstructing objects from
limited-angle input in practice. It is also shaown
that norm- or entropy-related reconstruction methods
are not expected to improve the fidelity of the re~
constructed images; only more a priori knowledge of
exaCct nature on the object can serve this purpose.

INTRODUCTION

In many radiation imaging applications, such as X-ray
computerized tomography, nuclear medicine, and electron
microscopy, it may be necessary or advantageous to
image an object from a restricted angular range. It
has been shown that in such cases the Fourier compo-
nents of an object that can be measured directly are
those outside a cone-shaped region in the Fourier
space [1,2]. In principle, all the missing

Fourier components can be recovered completely if the
object is known to be finite in extent [1,2]. In this
papar we explore the practical limits to the recover-
ing operations. In conformity with our previcus
terminology , we shall refer to the region in Fourier
space where the Fourier ccmponen%ts of an object are
measured directly as the "allowed cone”, and where
they are not known as the "missing cone".

fuformation Contained in Limited-Angle Data

In this section we derive an expression for the dis-
+orted object obtained by setting the Fourier com-
ponents of an object in the missing cone to zero,
«hich throws light on the practical limits to restric-
ted-angle reconstructions.

3n iteration algorithm has been proposed i1n our pre-
vious papers [1,2] to recover the missing~cone Fourier
camponents of an object distribution. The algorithm
is shown in Fig. 1. After initially setting its
missing-cone components to zero, the object is manipu-
lated back and forth between the object space
(i-s;ace) and the rourier space {k-space) via Fourier
transformaticns, being corrected in each step by its
known finite spatial extent R and the measured Fourier
compenents inside the allowed cone % which are
schematically shown in Fig. 2. The iteration scheme
can be foramuylatad in terms of two operators A and B
cpearing on any Fourier transfoxTable function £
defined in the Fourier space. A and B are defined as
follows:

Af = xl‘f

T e
Bf = T a.xa.~

where F and 1-‘-1 Tepresent the Fourier transformation
and its inverse: \y Xq are, respectively, the
characteristic functichs of the allowed cene, R, in
Fourier space and of the cbiect rezacn, Pb' in object
space, and are Jdefined as:

DIELLAMER ———’—_']

1 ’iCRa
Xa k) =
0 k£ZR,

1 z¢
Xg(®) -{ 2%
0 x £ R

Irzniems of these operators the reccnstructed image
R Tk} in Fourier space after n steps of iteration

can be represented as:

2 o= mar i),

& -1)

2™ o= parg + s nY 0 w

forn =2, 3, 4,+4---

where R{k) is the Fourier tr: sform of the object. It
has been shown in [3] that equution (1) can be written
in terms of the orthonormal set of eigenfunctions

v, (k) Jof the composite operator A and the corres-
ponding set of eigenvalues Hi),

A = ra ama-aMem, o<a <1 @)
1

where the a;s are the expansion coefficients of the
object R(k} in terms of the 'bis,

R(k} = iaiwi {k) (3)

Now from equation (1) the image after the first
iteration, R (k), is the distorted object obtained
by setting the missing-cone rourier components of the
object to zero, Fourier transforming to the object
space, and then resetting the values outside the
known object reg.on to zero. From equation (2) this
distorted object is given by:

m ,
LA {3 I itxiaivi ) {4)

Equation (4) shows that each eigenfunction component
a;%; (k) of the object is attenuaZed by a factor ',

if the Fourier components of the object in th. midsing
cone are set to zerc. This result agrees well with
the meaning of the i.s, namely, 4., is the ratio of the
mergy of the functidn ¢, (k) in 2. to the total energy
. i a

of Uy (k) I4].

Eguation (4) alsc shows that in principle an object
R{k) can be inverted from the distorted otject E”‘r(&)
with information only in the allowed cone: each
elgenfunction cvefiicient a, of R{k) is obtained by
@ividing the correspending coefficient of r (1} x) by
\;. This inversisn zrocess is gossible for every
ei;enfunc:ian ceamponent, since ali the zigenvalues are
nocn-zerc. In other words, 31} the infcrmation on an
cbject is, in principle, contained in its Fourier
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camponents in the aliowed cone. We note that a re.a-
tion similar to equation (4) was also derived in a
recent paper by Rushforth and Frost [5] for one-
dimensional band-limited signals.

In practice, however, the eigenfunction components
corresponding to the small eignevalues are very
difficult to recover because of the instability due to
noise amplification by 1/11. Figure 3 shows a plot of
the spectra of A; for varidus half-angles of the
allowed cone for a 9 pixels by 9 pixels square~-shaped
object boundary in a 21 x 21 reconstruction region.
Bach spectrum can be roughly divided into two regions:
one in which the i;js are close to unity, and the other
in which the Ajs are close to zerc. It is these small
Ajs which make thz inversion problem unstable in the
presence of noise.

Even in the hypothetical situation of noise free input
data, some of the elgenfunction components correspond-
ing to very small eigenvalues are lost in practical
computation. This is dve to the fact that all compu-
ting devices have a finite accuracy §, which means
that if Aa; <8 it cannot be registered, and conse-
quently a; cannot be determined by any means. Such
indetermmacy is to be expected from the meaning of

A,: the eigenfunction componenc L (k) cannot be
recovered if it is too weakly repreuented in the data
as to be of any practical use, Similar conclusion
was also arrived at by Klug and Crowther [6].

As an illustration consider the above mentioned
?ourier(lj_.ls:eration algorithm in Fig. 1. The truncation
error E' " (k) in texminating the iteration after n
steps is obtained from equation (2}:

£, = 2™ w - rw

n
= -Ia - 2" )

For the X;3 close to one the error coefficients

(l~>\i) approach zero rapidly as n increases; whereas
for the Kis close to zero it will take a very large
number n of iterations for (1-1\1) ta converge to zero.
For those )A;s below the accuracy of the computing
device, (l—i " always stays at 1 and does not converge
at all. uhicé means that the corresponsing component

a Wi (k} cannot be recovered. In such case the itera-
tlon algorithm automatically sets these components to
zero, from egquation (2}, which is the most reasonable
thing to do in the absence of any information.

Norm Minimization and Entrophy Maximization

The problem of determining the sigenfunction comnonents
coxresponding to very small eigenvalues can be likened
t¢ the missing~cone problem which we start with. The
Fourier ccmponents in the missing cone are not known
injtially, but, in principle, the additional informa-
tion on the finite spatial extent of the object enables
these missing Fourier camponents to be calculated frea
those in the allowed cone. Similarly, the irdetermi-
nate eigenfunction colp ts corresponding to very
small eigenvalues can be recovered, and thus the
fidelity of limited-angle recenstructions improved,
only if more a priori kncwledge or constraints on the
object other than its finite extent and location ave
available. For exampla, if it is xnown that an object
na= n-fold rotation vymmetry, projections in an angular
range of 7/n (instead of full - angle) will suffice %o
reconstruct it coapletely. Ancther exarple cccurs an
deternining the refractive index theat distridution)
arcund a wire carryiag current wheIo the diffusicn

equation holds {7]. Hotmaver,except for the constraint
of positivity which has been shown to be of little
help in reconstructing extended objects {9}, no cther
constraints of anexact nature are availatle for general
objects.

There are a number of algorithms which attempt to
reconstruct an object by imposing some extremum proper-
ty on the object as-additional information. Among
these algorithms are norm minimization [9)1 and
entropy maximization {10,11]. The constraints of
minimum norm and maximum entropy are not exact des-
criptions of the object, rather they are probabilistic
in nature. In this section we investigate the possi-
bility of using these constraints to recover the un-
determined coefficients a,s of the small-eigenvalue
components in limited-angle reconstruction.

The significance of the minimum norm solution 1s that
it is also the minimum variance solution consistent
with the data. This can be seen by considering

[t - 2%
- fD (5)2 &y - D_zx (object area)

where p 1s the mean density of the object distributior
o(x).

Minimum norm reconstructions thus presuppose that
reconstructed images containing wide ranges of density
values are unlikely. From Parseval's theorem and
equation (3}, the norm of P(_r.;) can be written as

Jote)? @ = [lrw |2a%
2
- flail (5)

Equation (5) indicates that setting the undetermined
coefficients ;s of the small-eigenvalue components %o
zero yields the minimum norm sclution subject to the
constraints of the measured data and the finite obiect
boundary. Clearly this sclution may not be the true
solution.

The entropy S of an cbject distribution (pi) is defined
as [12]:

o [

1 H
s=-lglesy

vhere T = T p. is the total object density. This
quantity is a"measure of the degree of randomness,

and hence the probability of occurrence, of an object
distribution [13). Algorithms of object reconstruc-
tion through entropy maximization are based on the
assumption that the most probable object distribu-~
tion is the one that possesses maximum entropy s:oject
to same given constraints, such as projection data at
some angles.

We have plotted the ratio of the rms error to mean
density and the entropy of some reconstructed images
of a 2-0 phantam. The phantom, shown in Fig. 4. is a
diamond-shaped object in a 32 x 32 reconstruction
region; the densities of the boundary, the interior,
and the hot spot in the middle are 2, 1, and 4
respectively. The object was reccnstructed frem its
Fourier compenents in the allowed cone through the
Pourier iteraticn algorithm. The results are shown
in Fig. 5-9 for the caseglh'herc the Eilf-angle_ii the
allok-e.d_icne equals tan “{0.S}, zan (1}, tan " (2},
and tan {4} respectively. <The rms error converges
to a steady leval after about 2C iterations in all



;:ues; the magnitude of the residual rms error
decreases with increase in the allowed-cone angle.
The behavior of these rms error curves can be expected
from the shape of the spectra of eigenvalues shown
in Pig. 3. As mentioned in the previous section,
the finite residual error is due to the small eigen-~
values whose error tems a; (1-)1)"!# (k) approach
2ero very slowly or not at all. “As the allowed cone
angle increases, Fig. 3 shows that the proportion of
small eigenvalues decreases, so does the residual
erxror. :

As for the entropy of the reconstructed images, it
increases rapidly with decrease in rms error during
the first ~20 iterations, and then converges to the
entropy value of the original object after the rms
error settles to a steady level regardless of the
magnitude of the residual rms error. Since the
residual error is caused by the small eigenvalues,
these results show that the entropy of the reconstruc~
ted images is insensitive to the small-eigenvalue
components, The reason for this insensitivity is
discussed in Appendix A. The implication, however,

is quite clear: it would be very difficult to recover
the small-eigenvalue components by any entropy-~related
reconstruction methods.

Conclusion

#a have shown that due to limitations in computing
accuracy some information is not recoverable in
reconstructing an object from restricted angular input.
This is true even in the ideal case when there is no
error in input data. The fidelity of reconstructed
images can only be improved if more a priori infor-
mation on the object other than its finite spatial
extent and location is available. We have also

shown that norm- or entropy-related methods are not
likely to produce such impr .

Acknowledgements

This work was suprnorted by the Physics, Computer
Science and Mathematics Division of Lawrence Berkeley
Laboratory, United States Department of Energy under
contract No. W-7405-ENG-48.

Appendix A

The reason for the insensitivity of the entropy of
reconstructed images to the small-eigenvalue components
can be understood with the help of Fig. 1. Assume

the center lines of the allowed cone and the missing
cone are oriented along the l&-axis and the kz-axis
respectively. Let o, represent the object density at
pixel i recontructed from limited-angle information
through the Fourier iteration algorithm, and 2p; be
the contribution to the density at pixel 1 from the

very-small-eigenvalue cc ts that t be
determine@ and hence set to zero. Thus [p; *+ 80,1}
represents the true object distribution. The distri-

bution {40, }is essentially made up of low-k, high-k,
Fourier cofponents since they are furthermost away
from the allowed cone and hence least affected by
the information there. Consequently {o.} is deficient
in low-k, high-k, Fourier componets, and thus the two
distributions ‘.pi} and !Api) are uncorrelated.

Assume {0;} is normalized, i.e. T &3 = 1, it then
follows{p; + 39;} is also normalized since a0, = O.
The entropy S of the object and the entropy $' of the
reconstructed inage are given by

5= - L{Py + 80g) log (P; + 4P;)
i

5'--?9110901

Their difference is

S—S'=-§A91109°i

Since (91)' 840 are uncorreiated, it is reasonable
that (Api) and {log °i} are also uncorrelated, thus

fADilogpi=o

and

5=35
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FIGURE CAPTIONS

Fourier transform iteration scheme for filling in missing-cone Fourier ccmponents.
Schematic representations of the allowed cone and the object extent.

Eigenvalue spectra of BA for a 2-D problem for various half-angles of the allowed
cone,

Ra: oriented along the k_-axis

Rb:-4 9 pixels by 9 pixels square in a 21 x 21 reconstruction area.

A 2-D diamond-shaped phantam.

The ratio of rms error to mean density and the entropy of the reconstructed image
of the diamond-shaped phantom as a function of the numgfr of Fourier transform
iterations. The half-angle of the allowed cone is tan (0.5).

The ratio of rms error to mean density and the entropy of the reconstructed image
of the diamond-shaped phantom as a function of the numgir of Fourier transform
iterations. The half-angle of the allowed cone is tan ).

The ratio of rms error to mean density and the entropy of the reconstructed image
of the diamond-shaped phantom as a function of the numgir of Fourier transform
iterations. The half-angle of the allowed cone is tan (23).

% .e ratio of rms error to mean density and the entropy of the reconstructed image
of the diamond-shaped phantom as a function of the numgir of Fourier transform
iterations. The half-angle of the allowed cone is tan 4).



Known Fourier components of
the object inside the allowed
cone; missing-cone components
set to zero initially.

Y

Estimated Fourier spectrum
of the object, corrected to
the known Fourier components
inside the allowed cone.

{ 94nby

F.F.T.

Estimated object density,
corrected to zero outside

the known extent of the

object.

A priori information
on the extent and
location of the object.
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