Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Nonequilibrium thermodynamics and glassy rheology

Published Web Location

https://arxiv.org/abs/1305.4770v1
No data is associated with this publication.
Abstract

Mechanically driven glassy systems and complex fluids exhibit a wealth of rheological behaviors that call for theoretical understanding and predictive modeling. A distinct feature of these nonequilibrium systems is their dynamically evolving state of structural disorder, which determines their rheological responses. Here we highlight a recently developed nonequilibrium thermodynamic framework in which the structural state is characterized by an evolving effective disorder temperature that may differ from the ordinary thermal temperature. The specific properties of each physical system of interest are described by a small set of coarse-grained internal state variables and their associated energies and entropies. The dynamics of the internal variables, together with the flow of energy and entropy between the different parts of the driven system, determine continuum-level rheological constitutive laws. We conclude with brief descriptions of several successful applications of this framework. © 2013 The Royal Society of Chemistry.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item