Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Low Serum Bicarbonate and Kidney Function Decline: The Multi-Ethnic Study of Atherosclerosis (MESA)

Abstract

Background

Among populations with established chronic kidney disease (CKD), metabolic acidosis is associated with more rapid progression of kidney disease. The association of serum bicarbonate concentrations with early declines in kidney function is less clear.

Study design

Retrospective cohort study.

Setting & participants

5,810 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with a baseline estimated glomerular filtration rate (eGFR) > 60mL/min/1.73 m(2) using the CKD-EPI (CKD Epidemiology Collaboration) creatinine-cystatin C equation.

Predictors

Serum bicarbonate concentrations.

Outcomes

Rapid kidney function decline (eGFR decline > 5% per year) and incident reduced eGFR (eGFR < 60mL/min/1.73 m(2) with minimum rate of eGFR loss of 1 mL/min/1.73 m(2) per year).

Results

Average bicarbonate concentration was 23.2 ± 1.8mEq/L. 1,730 (33%) participants had rapid kidney function decline, and 487 had incident reduced eGFR during follow-up. Each 1-SD lower baseline bicarbonate concentration was associated with 12% higher adjusted odds of rapid kidney function decline (95% CI, 6%-20%) and higher risk of incident reduced eGFR (adjusted incidence rate ratio, 1.11; 95% CI, 1.03-1.20) in models adjusting for demographics, baseline eGFR, albuminuria, and CKD risk factors. The OR for the associations of bicarbonate level < 21 mEq/L relative to 23-24 mEq/L was 1.35 (95% CI, 1.05-1.73) for rapid kidney function decline, and the incidence rate ratio was 1.16 (95% CI, 0.83-1.62) for incident reduced eGFR.

Limitations

Cause of metabolic acidosis cannot be determined in this study.

Conclusions

Lower serum bicarbonate concentrations are associated independently with rapid kidney function decline independent of eGFR or albuminuria in community-living persons with baseline eGFR > 60 mL/min/1.73 m(2). If confirmed, our findings suggest that metabolic acidosis may indicate either early kidney disease that is not captured by eGFR or albuminuria or may have a causal role in the development of eGFR < 60 mL/min/1.73 m(2).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View