- Main
Large ring-forming alkylations provide facile access to composite macrocycles
Published Web Location
https://doi.org/10.1039/c4sc03848gAbstract
Macrocyclic compounds have potential to enable drug discovery for protein targets with extended, solvent-exposed binding sites. Crystallographic structures of peptides bound at such sites show strong surface complementarity and frequent aromatic side-chain contacts. In an effort to capture these features in stabilized small molecules, we describe a method to convert linear peptides into constrained macrocycles based upon their aromatic content. Designed templates initiate the venerable Friedel-Crafts alkylation to form large rings efficiently at room temperature - routinely within minutes - and unimpeded by polar functional groups. No protecting groups, metals, or air-free techniques are required. Regiochemistry can be tuned electronically to explore diverse macrocycle connectivities. Templates with additional reaction capabilities can further manipulate macrocycle structure. The chemistry lays a foundation to extend studies of how the size, shape and constitution of peptidyl macrocycles correlate with their pharmacological properties.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-