Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Global rates of water-column denitrification derived from nitrogen gas measurements

Published Web Location

https://doi.org/10.1038/ngeo1515Creative Commons 'BY' version 4.0 license
Abstract

Biologically available nitrogen (N) limits phytoplankton growth over much of the ocean. The rate at which N is removed from the contemporary ocean by denitrifying bacteria is highly uncertain 1-3. Some studies suggest that N losses exceed inputs 2,4-6; others argue for a balanced budget 3,7,8. Here, we use a global ocean circulation model to simulate the distribution of N 2 gas produced by denitrifying bacteria in the three main suboxic zones in the open ocean. By fitting the model to measured N 2 gas concentrations, we infer a globally integrated rate of water-column denitrification of 66 ±6 Tg N yr -1. Taking into account isotopic constraints on the fraction of denitrification occurring in the water column versus marine sediments, we estimate that the global rate of N loss from marine sediments and the oceanic water column combined amounts to around 230 ±60 Tg N yr -1. Given present estimates of N input rates, our findings imply a net loss of around 20 ± 70 Tg of N from the global ocean each year, indistinguishable from a balanced budget. A balanced N budget, in turn, implies that the marine N cycle is governed by strong regulatory feedbacks. © 2012 Macmillan Publishers Limited. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View