Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Tissue harvest with a laser microbiopsy

Abstract

Significance

Traditional pathology workflow suffers from limitations including biopsy invasiveness, small fraction of large tissue samples being analyzed, and complex and time-consuming processing.

Aim

We address limitations of conventional pathology workflow through development of a laser microbiopsy device for minimally invasive harvest of sub-microliter tissue volumes. Laser microbiopsy combined with rapid diagnostic methods, such as virtual hematoxylin and eosin (H&E) imaging has potential to provide rapid minimally invasive tissue diagnosis.

Approach

Laser microbiopsies were harvested using an annular shaped Ho:YAG laser beam focused onto the tissue surface. As the annulus was ablated, the tissue section in the center of the annulus was ejected and collected directly onto a glass slide for analysis. Cryogen spray cooling was used before and after laser harvest to limit thermal damage. Microbiopsies were collected from porcine skin and kidney. Harvested microbiopsies were imaged with confocal microscopy and digitally false colored to provide virtual H&E images.

Results

Microbiopsies were successfully harvested from porcine skin and kidney. Computational and experimental results show the benefit of cryogen pre- and post-cooling to limit thermal damage. Virtual H&E images of microbiopsies retained observable cellular features including cell nuclei.

Conclusions

Laser microbiopsy with virtual H&E imaging shows promise as a potential rapid and minimally invasive tool for biopsy and diagnosis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View