Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Carbon nanotube substrates enhance SARS-CoV-2 spike protein ion yields in matrix-assisted laser desorption–ionization mass spectrometry

Published Web Location

https://doi.org/10.1063/5.0128667
Abstract

Nanostructured surfaces enhance ion yields in matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). The spike protein complex, S1, is one fingerprint signature of Sars-CoV-2 with a mass of 75 kDa. Here, we show that MALDI-MS yields of Sars-CoV-2 spike protein ions in the 100 kDa range are enhanced 50-fold when the matrix-analyte solution is placed on substrates that are coated with a dense forest of multi-walled carbon nanotubes, compared to yields from uncoated substrates. Nanostructured substrates can support the development of mass spectrometry techniques for sensitive pathogen detection and environmental monitoring.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View