Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

MORC proteins regulate transcription factor binding by mediating chromatin compaction in active chromatin regions

Abstract

Background

The microrchidia (MORC) proteins are a family of evolutionarily conserved GHKL-type ATPases involved in chromatin compaction and gene silencing. Arabidopsis MORC proteins act in the RNA-directed DNA methylation (RdDM) pathway, where they act as molecular tethers to ensure the efficient establishment of RdDM and de novo gene silencing. However, MORC proteins also have RdDM-independent functions although their underlying mechanisms are unknown.

Results

In this study, we examine MORC binding regions where RdDM does not occur in order to shed light on the RdDM-independent functions of MORC proteins. We find that MORC proteins compact chromatin and reduce DNA accessibility to transcription factors, thereby repressing gene expression. We also find that MORC-mediated repression of gene expression is particularly important under conditions of stress. MORC-regulated transcription factors can in some cases regulate their own transcription, resulting in feedback loops.

Conclusions

Our findings provide insights into the molecular mechanisms of MORC-mediated chromatin compaction and transcription regulation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View