Skip to main content
eScholarship
Open Access Publications from the University of California

α-attractor dark energy in view of next-generation cosmological surveys

Abstract

The α-attractor inflationary models are nowadays favored by CMB Planck observations. Their similarity with canonical quintessence models motivates the exploration of a common framework that explains both inflation and dark energy. We study the expected constraints that next-generation cosmological experiments will be able to impose for the dark energy α-attractor model. We systematically account for the constraining power of SNIa from WFIRST, BAO from DESI and WFIRST, galaxy clustering and shear from LSST and Stage-4 CMB experiments. We assume a tensor-to-scalar ratio, 10-3 < r < 10-2, which permits to explore the wide regime sufficiently close, but distinct, to a cosmological constant, without need of fine tunning the initial value of the field. We find that the combination S4CMB + LSST + SNIa will achieve the best results, improving the FoM by almost an order of magnitude; respect to the S4CMB + BAO + SNIa case. We find this is also true for the FoM of the w0-wa parameters. Therefore, future surveys will be uniquely able to probe models connecting early and late cosmic acceleration.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View