- Main
Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors
Published Web Location
https://doi.org/10.1016/j.cub.2016.12.016Abstract
The Aux/IAA proteins are auxin-sensitive repressors that mediate diverse physiological and developmental processes in plants [1, 2]. There are 29 Aux/IAA genes in Arabidopsis that exhibit unique but partially overlapping patterns of expression [3]. Although some studies have suggested that individual Aux/IAA genes have specialized function, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes [4]. Furthermore, with a few exceptions, our knowledge of the factors that regulate Aux/IAA expression is limited [1, 5]. We hypothesize that transcriptional control of Aux/IAA genes plays a central role in the establishment of the auxin-signaling pathways that regulate organogenesis, growth, and environmental response. Here, we describe a screen for transcription factors (TFs) that regulate the Aux/IAA genes. We identify TFs from 38 families, including 26 members of the DREB/CBF family. Several DREB/CBF TFs directly promote transcription of the IAA5 and IAA19 genes in response to abiotic stress. Recessive mutations in these IAA genes result in decreased tolerance to stress conditions, demonstrating a role for auxin in abiotic stress. Our results demonstrate that stress pathways interact with the auxin gene regulatory network (GRN) through transcription of the Aux/IAA genes. We propose that the Aux/IAA genes function as hubs that integrate genetic and environmental information to achieve the appropriate developmental or physiological outcome.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-